
大数据实现“0”到“1” 要分几步走
大数据有多火?这样的答案可能有千百种,也从反向证明了大数据真的太火,因为所有人都知道。众所周知,在Gartner报告中,常常会看到炒作周期这个词汇。这意味着有很多技术,虽然人人皆知,但是距离实际应用落地还有一段距离,这就是炒作期。
大数据从0到1分几步?
然而,大数据应该过了炒作期,我们更应该关注的是大数据的落地,关注从零到一的过程。正是因为几百TB甚至几PB的数据限制没有任何意义,才让数据的处理过程显得更为重要。
首先我们要分清大数据与传统的统计分析的区别,首先,大数据的体量更大,在大数据分析过程中,也采用全体分析,而非抽样形式;其次,在分析过程中,大数据更注重相关性,而非因果关系;最后,在大数据时代,因为数据的更新速度快,人们更注重效率,而非绝对的精确。
这些变化让大数据不得不面临处理方法的变化。一般来讲,大数据的处理流程有四步,分别是:采集、导入和预处理、统计和分析,然后是数据挖掘。
数据的采集,在大数据处理中一直都是第一步。在生活中可以映射到方方面面,每一次的搜索痕迹、注册信息都是数据,而物联网的发展也将为未来数据的采集提供帮助。而在数据采集过程中,如何处理好峰值将是面临的首要问题,而这就要依靠合理的分流、公有云、两地三中心等IT架构方法来解决问题。
数据传输需要解决峰值过高问题
数据的导入和预处理,常常是与第一步数据的采集合在一起进行,通过数据库来对数据进行集中存储。可以将结构性数据和非结构性数据存储,数据导入过程中,最重要的特点是每秒导入的数据量比较大。
数据处理分四步
数据的统计与分析已经成为近年来的一种新兴职业,收到很多企业的青睐。尤其在可视化分析领域,通过对数据的计算将计算结果用图片等形式类进行呈现,得出一个直观的结论。这样的分析方法与用户的交互性较强,数据的显示体现多维性,同时能够最直观的得出数据特点。
数据挖掘往往是大数据处理的最后一步,数据挖掘往往是已经设定好一个主体,为了找到某个答案而进行分析和计算,从而达到预测的效果。数据挖掘的定义是从海量数据中找到有意义的模式或知识,数据挖掘也成为数据的终极目的。
大数据实现从“0”到“1”要分几步走?从数据的处理来看,这个过程需要经历四步,当然可能有些数据处理过程中将数据采集和导入集中在一起,或者没有预设一个主体进行数据挖掘,都体现了大数据时代的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23