京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据实现“0”到“1” 要分几步走
大数据有多火?这样的答案可能有千百种,也从反向证明了大数据真的太火,因为所有人都知道。众所周知,在Gartner报告中,常常会看到炒作周期这个词汇。这意味着有很多技术,虽然人人皆知,但是距离实际应用落地还有一段距离,这就是炒作期。
大数据从0到1分几步?
然而,大数据应该过了炒作期,我们更应该关注的是大数据的落地,关注从零到一的过程。正是因为几百TB甚至几PB的数据限制没有任何意义,才让数据的处理过程显得更为重要。
首先我们要分清大数据与传统的统计分析的区别,首先,大数据的体量更大,在大数据分析过程中,也采用全体分析,而非抽样形式;其次,在分析过程中,大数据更注重相关性,而非因果关系;最后,在大数据时代,因为数据的更新速度快,人们更注重效率,而非绝对的精确。
这些变化让大数据不得不面临处理方法的变化。一般来讲,大数据的处理流程有四步,分别是:采集、导入和预处理、统计和分析,然后是数据挖掘。
数据的采集,在大数据处理中一直都是第一步。在生活中可以映射到方方面面,每一次的搜索痕迹、注册信息都是数据,而物联网的发展也将为未来数据的采集提供帮助。而在数据采集过程中,如何处理好峰值将是面临的首要问题,而这就要依靠合理的分流、公有云、两地三中心等IT架构方法来解决问题。
数据传输需要解决峰值过高问题
数据的导入和预处理,常常是与第一步数据的采集合在一起进行,通过数据库来对数据进行集中存储。可以将结构性数据和非结构性数据存储,数据导入过程中,最重要的特点是每秒导入的数据量比较大。
数据处理分四步
数据的统计与分析已经成为近年来的一种新兴职业,收到很多企业的青睐。尤其在可视化分析领域,通过对数据的计算将计算结果用图片等形式类进行呈现,得出一个直观的结论。这样的分析方法与用户的交互性较强,数据的显示体现多维性,同时能够最直观的得出数据特点。
数据挖掘往往是大数据处理的最后一步,数据挖掘往往是已经设定好一个主体,为了找到某个答案而进行分析和计算,从而达到预测的效果。数据挖掘的定义是从海量数据中找到有意义的模式或知识,数据挖掘也成为数据的终极目的。
大数据实现从“0”到“1”要分几步走?从数据的处理来看,这个过程需要经历四步,当然可能有些数据处理过程中将数据采集和导入集中在一起,或者没有预设一个主体进行数据挖掘,都体现了大数据时代的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11