
简要分析全球大数据发展六大趋势
当前,大数据已成为继物联网、云计算之后的信息技术产业中最受关注的热点领域之一。随着大数据从概念渗透转向应用发展,大数据产业正处在蓬勃发展的孕育期与机遇期。大数据技术将在开源环境下不断提升,大数据产业将依赖快速聚集的社会资源,在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,大数据产业生态也将得到不断完善。大数据产业将成为引领信息技术产业发展的核心引擎,推动社会进步的重要力量。
一、开源成为技术创新主要模式
经过多年来的高速发展,大数据相关的数据采集、存储、分析、可视化等多个基础性技术领域已经取得较大的突破,形成了实用性强、稳定度高的技术能力,大数据整体技术体系已初步构建完成,未来大数据技术的发展方向将主要集中在非结构化数据的价值提取方面。
从大数据技术的发展历程上可以看出,大数据核心技术如分布式存储、云端分布式及网格计算均是依赖于开源模式,即通过开放式的平台,吸引全球开发者通过开源社区来进行代码的开发、维护和完善,从而集全球智慧推动大数据技术的不断进步,当前全球各大企业加大了对开源社区的赞助和智力投入,开源社区在大数据技术进步中将占据核心地位,开源模式将成为大数据技术创新的主要途径。
同时,大数据的技术发展与物联网、云计算、人工智能等新技术领域的联系将更加紧密,物联网的发展将极大提高数据的获取能力,云计算与人工智能将深刻地融入数据分析体系,开源模式在新技术的发展中举足轻重。
二、大数据聚集资源能力更加明显
大数据技术已经在商贸、交通、城市管理等多个领域中得到了应用,各产业领域未来的发展方向几乎都能和大数据挂钩,社会各界对大数据的未来充满信心,大数据产业正成为社会各类资源的聚集地。随着大数据产业的不断成熟,其对社会资源的吸引力将进一步加大。
各国政府均将发展大数据作为推动信息技术产业发展的重心,大数据成为“政策资源”的聚集地。美国、欧盟、日本、韩国等发达国家及地区均将发展大数据作为重要的国家战略,印度、俄罗斯等国家更是将发展大数据产业视作实现经济赶超的黄金机遇。
中小微企业和创业者对大数据热情高涨,大数据成为“智力资源”的聚集地。大数据产业是典型的知识密集型服务业,智力是大数据产业发展的推动力。当前,越来越多的中小微企业和创业者投身到大数据产业,力图依靠新兴技术获取快速发展。
社会各界加大了对大数据的投资,大数据成为“金融资源”的聚集地。近年来,全球各大企业对大数据的投入不断增加,不仅设立自己的大数据研发和应用中心,还通过并购等方式加大对大数据产业的布局。大数据创业企业也吸引了更多的市场关注,因而更容易获得投资机构的资金支持。
三、数据和应用将成为驱动创新的主动力
当前,大数据的技术体系逐步完善,大数据技术的开源模式有效降低了产业技术的壁垒,基础技术在大数据创新中的作用依然存在,但其重要性将逐步降低,大数据创新将更多地依赖于数据驱动和应用驱动。
数据驱动创新源于大数据的基础技术体系。在大数据技术体系中,数据的采集是一切的基础,而数据存储、分析、可视化均与数据模式紧密相关,传统的结构化数据将不再成为大数据中重点关注的内容,而大量存在的非结构化数据和半结构化数据带来的技术和应用领域是大数据的蓝海。多样类型的数据分析、复杂的数据组合、多源的数据融合等问题将成为大数据创新的重要聚焦点。
应用驱动创新源于大数据的价值释放机制。大数据应用的基础是数据的采集、存储等环节,而大数据的市场价值主要体现在对海量数据的分析和可视化。在不同行业中,大数据应用需求也不尽相同,数据的分析手段、可视化方式均有所区别,因此符合实际应用需求的价值获取将是未来大数据关注的重点,应用将驱动大数据解决方案提供商采取不同的数据源,使用不同的数据分析方法,进而推动产业创新。
四、商业模式伴随连接层次的加深不断创新
在大数据技术体系中,数据是各方连接的中心,而核心价值也是在不同的连接中体现的,大数据的商业模式将根据连接方式的不断拓展而持续创新。
大数据中初级的连接方式是数据源和中心的连接,从而带来了数据托管和数据交易商业模式。数据托管是当前最为成熟、最为普遍的大数据商业模式,本质是发挥规模效应从而降低数据信息的存储和查询成本。数据交易平台促进了大数据链的上下游整合和横向的多种产业整合,当前如亚马逊、微软等企业均建立了数据商店。
大数据中级的连接方式是数据和价值的连接,数据关系挖掘和沉淀价利用的商业模式应运而生。关系挖掘是当前主流的大数据商业模式,是数据科学的主要应用方式,通过数据发现隐藏的相关性,从而实现商业指导、精准服务、决策服务。沉淀价值利用是将传统无意义或垃圾数据进行利用,从而得出有价值的结论,是大数据技术能力的重要体现。
大数据中高级的连接方式是需求和供给的连接,其商业模式如数据社交O2O。在这种模式中,数据成为连接网络各个节点的中介,个体作为网络节点可以通过数据相连,而大数据可以促进网络中个体间的交流,从而有效降低需求和供给之间的连接成本。
五、市场格局将呈现多层多样竞争态势
大数据正处在快速发展期,市场上呈现出各类企业竞相参与共同发展的态势。随着大数据的不断成熟,市场格局也将随之变化,呈现出截然不同的态势。
在数据采集领域,互联网企业根据自身的优势展开激烈的竞争。大数据数据源主要来源于三个方向:互联网数据、政府数据和企业数据,由于后两类数据的采集主体一般不变,市场相对稳定,而对于互联网数据,全球各大互联网企业已经认识到数据的价值,将在数据获取入口等方面展开激烈的竞争,小型企业在该领域很难有所作为。如我国百度、腾讯、阿里分别重点掌握着搜索、社交和电商数据。
在数据存储和交易领域,市场将呈现平台化发展趋势,大型企业将占据一定的优势。未来,随着云端数据中心的不断推进和企业存储能力的开放,数据存储将会更趋于集中,大型数据平台将应运而生。在该领域,传统大型IT企业和大型互联网企业将依靠其技术能力和数据资源,占据绝大多数的市场份额。
在数据分析和可视化等领域,市场将呈现多样化、定制化发展趋势,各类企业特别是中小企业将成为市场的主力。一方面,大数据技术的开源特征和企业级计算能力的开放使得大数据分析的技术门槛逐步降低;另一方面,应用需求的多样化使得定制化服务成为主流,小型企业能够获得更多的市场发展空间。当前,很多大数据创业企业均是针对该领域企业,为其提供各类多样化、定制化的服务方案。
六、数据安全保障能力得到提升
健全的数据分级制度为数据开放提供保障。当前大数据应用主要集中在互联网领域和政府治理两个方面。对于互联网数据,其中包含着大量的个人用户数据,个人隐私的保护不仅关系到个人的财产安全,还关系到社会的诚信建立和歧视消除,关系到大数据未来的健康发展。对于政府数据,其中包含着事关国家发展的数据,其可能对国家安全产生影响。数据开放已成为各界共识,健全的数据分级制度将在政府和产业界的共同努力下得以实现。
更加完善的技术审查制度为技术开放带来支撑。大数据技术的开源性是技术开放的核心体现,其具有两方面作用:一是降低了企业进入大数据领域的技术门槛,使得大数据领域充满活力,促进产业的快速发展;另一方面也使不法分子有了获取不当利益的技术手段,如通过大数据技术定向获取个人隐私,这将极大地危害整个产业发展,可能促使技术能力逐渐转为封闭。为了保证产业的快速健康发展,更加完善的技术能力提供和完备的审查机制将是政府和产业界的工作重点。
总体看,2016年全球大数据产业规模将继续扩大,加速发展趋势不变,我国应着眼于产业发展趋势,进一步布局大数据领域发展。一是促进政产学研用联合,积极利用开源模式和开放社区资源,加强大数据共性基础技术研发。二是制定实施政府数据开放计划,确立数据开放的机制、重点开放领域和实施步骤,推动公共数据资源适度、合理地跨部门分享和向社会开放。三是充分发挥政府及公共服务部门的引领和表率作用,加强大数据分析和应用,选择关系国计民生的重点行业领域,以应用模式创新和商业模式创新为重点,开展试点示范。四是妥善处理好发展创新和安全规范的关系,审慎监管、保护创新,探索和完善安全管理规范措施,切实保障数据安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07