京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论传统行业和电子商务的对数据分析的不同运用
电商界有种说法,说传统企业的电商缺乏电子基因,而电商新贵缺乏商业基因,大数据分析观察来看,就是一个缺乏有效引流、流量转换、网站粘客等产品和运营手段,而另一个缺乏成本费用控制的有效手段,让快速增长沉淀下来。
保守而稳重与快速而多变发展
有一段时间公司电商迷茫期间(规模还不大的时候),停止了大部分引流推广投入,来降低费用支出,当时老客户消费占比一度达到60%以上,这在规模不大的电商里,发展会非常缓慢的。虽然保守稳重,但规模尚小,所以即便这样,还是亏本。物极必反,这种思路是不可取的,电商界规模小还不赚钱,还不如规模大不赚钱。当后面继续推动流量推广,老客户活跃度提高的同时,还能达到新老客户比例6:4到7:3,在规模大幅提高的同时,盈利预期反而有好转。
还有一个案例,曾经为某互联网产品分析诊断,发现其发展速度非常快,但快在新客户增长快、一次性使用产品的人数增长快,但用户几乎没有粘性。其核心原因是,产品目标客户群体都是贪小便宜的,每次增长都离不开抽奖、活动,但当客户使用之后,发现索然无味,于是就大部分没有后文了,甚至退出注册了。
在关联性分析中,我们发现只有少数沉淀下来的客户之间的交流,是收入增长的动力,活动刺激与收入并非主因,所以我们建议客户细分后,建立话题组,来吸引客户之间的持续交流。有决策者问,这个结论应该可以猜到啊,我说我分析结论的重点不是要证明收入和客户之间交流有线性关系这种能猜到的结论,主要证明现在花90%精力运营和策划的所有活动刺激都与收入上升没有直接的关系,需要把绝大部分精力由想活动办法到想吸引他们互相交流的专题和他们之间的精确匹配。但如果主要运营方向还是注重刺激,那么这个情况仍不可逆转。后来的情况就是,业务决策还是觉得“吃鸦片还是要过瘾点”,虽然数据分析提出的产品改进方向和运营建议已经有了,但觉得产品和运营提高哪有那么容易,不如“吃鸦片”轻松,这就不是数据分析能改变的结果了。
客户产品贡献与价值
如果要二者兼得,很多似乎决策者都是有思路和方向,那剩下的就是执行,执行靠的是数据分析的精确运营手段。
从数据的角度看,销售规模和利润,都可以分客户、产品、其他运营成本三个大角度来看。我们常听说要细分客户,提高客户黏度、客户忠诚度,但都是从纯市场角度考虑客户的分析和运营,所以无法与财务角度接轨。客户黏度和忠诚度,在财务角度仅仅体现在对公司的累积销售、市场贡献,并未显现出“利润贡献”。
利润贡献需要考虑如下角度:
累积销售额
累积销售毛利
累积成本费用
这个对客户、产品都有效,其中传统企业对于产品的研究已经有非常久的积累,所以可以延伸到客户角度继续探讨。客户毛利很好计算,就是他购买产品贡献的毛利;客户的成本费用,即使不算分摊费用,那么客户所占客服资源、客户退换货、客户激活成本等都是可量化的,这些综合因素,就是所谓的客户价值分析。简单分析,可以用四象限大概分论,深入分析就是进一步量化。对于不同价值趋向的客户,都可以引导向企业想要的目标,例如某客户黏度高,但毛利贡献少,激活有时需要成本,对于这样的客户,对应的运营手段,应该是继续让用户感觉占到便宜,但暗中推销高毛利低总价且有实用价值的产品给他。
产品价值在传统领域已经有了长久积累的经验,那就是一规划生命周期,二是制定毛利和平均毛利率目标,三是动态分析调整产品营销策略。具体以前已经提到过,这里不用多讲。
殊途同归的总结
据说很多电商新贵已经开始重视数据分析与财务驱动了,但是稍微为时过晚,因为客户选择后客户价值已经被拉低,库存累计且产品价值偏低,要花更大的代价才能逐步挽回。而传统企业转型中,可能受老业务影响,会束手束脚,资源和人才跟不上。
从数据分析可以看出,其实无论电商注重财务角度,包括客户、产品价值贡献的提升,还是传统企业注重网络营销效果、网站布局优化,都是为了更好地发展电商,他们并不矛盾,只是出发点不同。而数据分析的价值就是对这些业务运营量化,与“较虚”的战略目标匹配得上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29