
论传统行业和电子商务的对数据分析的不同运用
电商界有种说法,说传统企业的电商缺乏电子基因,而电商新贵缺乏商业基因,大数据分析观察来看,就是一个缺乏有效引流、流量转换、网站粘客等产品和运营手段,而另一个缺乏成本费用控制的有效手段,让快速增长沉淀下来。
保守而稳重与快速而多变发展
有一段时间公司电商迷茫期间(规模还不大的时候),停止了大部分引流推广投入,来降低费用支出,当时老客户消费占比一度达到60%以上,这在规模不大的电商里,发展会非常缓慢的。虽然保守稳重,但规模尚小,所以即便这样,还是亏本。物极必反,这种思路是不可取的,电商界规模小还不赚钱,还不如规模大不赚钱。当后面继续推动流量推广,老客户活跃度提高的同时,还能达到新老客户比例6:4到7:3,在规模大幅提高的同时,盈利预期反而有好转。
还有一个案例,曾经为某互联网产品分析诊断,发现其发展速度非常快,但快在新客户增长快、一次性使用产品的人数增长快,但用户几乎没有粘性。其核心原因是,产品目标客户群体都是贪小便宜的,每次增长都离不开抽奖、活动,但当客户使用之后,发现索然无味,于是就大部分没有后文了,甚至退出注册了。
在关联性分析中,我们发现只有少数沉淀下来的客户之间的交流,是收入增长的动力,活动刺激与收入并非主因,所以我们建议客户细分后,建立话题组,来吸引客户之间的持续交流。有决策者问,这个结论应该可以猜到啊,我说我分析结论的重点不是要证明收入和客户之间交流有线性关系这种能猜到的结论,主要证明现在花90%精力运营和策划的所有活动刺激都与收入上升没有直接的关系,需要把绝大部分精力由想活动办法到想吸引他们互相交流的专题和他们之间的精确匹配。但如果主要运营方向还是注重刺激,那么这个情况仍不可逆转。后来的情况就是,业务决策还是觉得“吃鸦片还是要过瘾点”,虽然数据分析提出的产品改进方向和运营建议已经有了,但觉得产品和运营提高哪有那么容易,不如“吃鸦片”轻松,这就不是数据分析能改变的结果了。
客户产品贡献与价值
如果要二者兼得,很多似乎决策者都是有思路和方向,那剩下的就是执行,执行靠的是数据分析的精确运营手段。
从数据的角度看,销售规模和利润,都可以分客户、产品、其他运营成本三个大角度来看。我们常听说要细分客户,提高客户黏度、客户忠诚度,但都是从纯市场角度考虑客户的分析和运营,所以无法与财务角度接轨。客户黏度和忠诚度,在财务角度仅仅体现在对公司的累积销售、市场贡献,并未显现出“利润贡献”。
利润贡献需要考虑如下角度:
累积销售额
累积销售毛利
累积成本费用
这个对客户、产品都有效,其中传统企业对于产品的研究已经有非常久的积累,所以可以延伸到客户角度继续探讨。客户毛利很好计算,就是他购买产品贡献的毛利;客户的成本费用,即使不算分摊费用,那么客户所占客服资源、客户退换货、客户激活成本等都是可量化的,这些综合因素,就是所谓的客户价值分析。简单分析,可以用四象限大概分论,深入分析就是进一步量化。对于不同价值趋向的客户,都可以引导向企业想要的目标,例如某客户黏度高,但毛利贡献少,激活有时需要成本,对于这样的客户,对应的运营手段,应该是继续让用户感觉占到便宜,但暗中推销高毛利低总价且有实用价值的产品给他。
产品价值在传统领域已经有了长久积累的经验,那就是一规划生命周期,二是制定毛利和平均毛利率目标,三是动态分析调整产品营销策略。具体以前已经提到过,这里不用多讲。
殊途同归的总结
据说很多电商新贵已经开始重视数据分析与财务驱动了,但是稍微为时过晚,因为客户选择后客户价值已经被拉低,库存累计且产品价值偏低,要花更大的代价才能逐步挽回。而传统企业转型中,可能受老业务影响,会束手束脚,资源和人才跟不上。
从数据分析可以看出,其实无论电商注重财务角度,包括客户、产品价值贡献的提升,还是传统企业注重网络营销效果、网站布局优化,都是为了更好地发展电商,他们并不矛盾,只是出发点不同。而数据分析的价值就是对这些业务运营量化,与“较虚”的战略目标匹配得上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15