
数据分析师不是单纯做数学题 不懂商业就别谈数据
前一段日子见到一位数据发烧友,我们两个有一个一致的观点:电子商务发展速度越来越快,这个行业的趋势变化也越来越快。对于电子商务公司老板来说,想要自己永远跟着趋势走,学会数据驱动是必然的了。
庆幸的是,今年搞电子商务的人对数据分析开始重视起来了,就连夫妻店起来的淘宝卖家也开始招数据分析师,更别谈一些再大些的电子商务公司。
但是,这让我心存隐忧:现在不是缺数据,而是数据太多。据统计,在今天的互联网上,每60秒会产生10万个微薄信息、400万次search、facebook上50万次contact。我相信,今天稍大一些的电子商务公司,都会采集一些行为数据(比如点击量),但是这些行为数据与商业数据(比如交易量)有什么关系?今天绝多数公司,甚至包括凡客这样的著名电子商务公司,都不知道怎样利用这成千上万的零散数据。
需要数据逻辑,更需要商业敏感
先讲一个有趣的故事。有一天,linkin发现忽然发现雷曼兄弟的来访者多起来了,但是并没有深究原因,第二天雷曼兄弟就宣布倒闭了。原因是什么?雷曼兄弟的人到linkin来找工作了。谷歌宣布退出中国的前一个月,我在linkedin发现了一些平时很少见的谷歌的产品经理在线,这也是相同的道理。
试想,如果linkin针对某家上市公司分析某些数据,是不是有商业价值呢?我相信,现在51job绝对不知道要采集这些数据,只盯着注册用户数量这样的简单数据。国内许多互联网公司,拿着鱼翅当萝卜。
说这个故事,只是为了告诉大家,互联网中的数据,需要用商业的眼光去分析,才有价值。
今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中看到解开市场的密码的本事。
比如,当一个具有商业意识的数据分析师发现,网站上的婴儿车的销量增加了,那么他基本可以预测奶粉的销量也会跟着上去。
再比如,和传统卖场一样,网站上的产品起到的作用并不一样,有的产品是为了赚钱,有的产品是为了促销的,有的产品是为了引流量,不同的产品在网站上摆放位置当然是不一样的。
一个商业敏感的数据分析师,是懂得用什么数据驱动公司目标实现的。
比如,乐酷天与淘宝竞争,重点看的不是交易量,而是流量,每天有多少新的seller进来,卖了多少东西。因为此阶段的饿竞争最核心的就是人气,而非实质交易量。如果新来的seller进来卖不出东西,只是老的seller的交易量在增长,即使最后交易量每天都增长,还是有问题。
再比如,一家刚踏入市场的B2C和已经占领大部分市场的B2C,他们的公司目标是不一样的,前者是看流量赚人气,流量对后者的意义没有那么大,成熟的公司重点是看交易,转化率及回头率的。。
而当下的数据分析师多是学统计学出身的,一对数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中谁和谁有关系,也就不知道该用什么的逻辑分析,也就无法充当老板的眼睛了。
前几天遇到一个老板,他说手下每天给他看几十个零散数据。我问,是不是数据越多越麻烦。他说我一下子就点出他的痛处了,因为请来的数据分析专家只把数据交到他面前,但是却没有把行为数据和商业数据的关系告诉他。
你说,一个公司CEO,每天看到几十个数据,什么PV、PU、UV等等等,他们有精力来解读吗?对于他们来说,只需要知道有问题吗?问题是什么?有新的发现吗?需要做什么?这就行了。
我把这个理解成为数据的世界里的“仪表盘”,比如说网站流量进来弹出率怎样就可以在仪表盘里呈现。你开车,如果水温过高,仪表盘亮灯提示。同样,在电子商务的交易中,也可以用一些数据组成“仪表盘”。
所以说,数据分析师不是单纯做数学题。
行为数据和商业数据,互相推动
一个好的仪表盘,出现好的情况和坏的情况,仪表盘都会有提示。而构成“仪表盘”,正是行为数据和商业数据之间的逻辑关系。
我自己发明了一种称谓:前端行为数据和后端商业数据。前段数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据,而后端数据更侧重商业数据,比如交易量、ROI, LTV(Life time Value)。
目前有些人关心行为数据,也有些人关心商业数据,但是没有几家网站是把行为数据和商业数据连起来看的。大家只单纯看某一端数据。国内小有名气的网站CEO,每天也只看一个结果数据:网站今天的成交量是多少,卖了多少件产品。
但是看数据看得走火入魔的人会明白,每个数据,就像散布在黑夜里的星星,它们之间彼此布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。
大家都比较关心网站用户群,就以此举例子。
某一天,某网站发现自己的前端的注册量增加了不少,访问量也上去了,交易量却没有上去,不死不活。
原因是什么?这是许多网站的通病,每天有许多脑子在想这个问题。现在这个阶段,处在互联网前段的人只知道点击量等数据,很少问后端的商业数据,如谁一直在重复购买?谁影响了5%~15%核心用户群进来买东西?谁在给网站做正/负面传播?
而操作网站后端交易环节的人只知道卖东西,又很少问到前端数据,如一个客户进来网站平均停留时间了15分钟还是30分钟,这对将来重复购买的关系大吗?一个客户进了网站社区和没进社区,对产生交易量有关系吗?
找不到核心用户群的原因,很大原因是没有把行为数据与商业数据对接来看。
于是,前后端数据割裂,没有人知道其中的关系。作为网站的决策者,不知道网站的核心用户群的行为特徵,也不知道怎样刺激核心用户的增加,更不知道从一个用户进来网站之后到走出去,哪些环节是需要疏通。
当然这只是一个管中窥豹而已。一个平台运营商,反应用户行为的前端数据与后端的商业数据千千万万,卖家和买家也是千千万万,其中前端哪个数据对整个网站后端的交易量产生最大影响,只要针对这个前端数据猛下药,必然会刺激后端数据的增加;反过来,后端哪个交易数据比较高,摸清楚是从哪个渠道来的,主要贡献用户是谁,网站的产品设计就要倾斜于他们,对他们好一点,如此才会渠道前端的“转化率”等关键数据的提升。
如果一个网站的核心用户群每月以10%的速度在增长,不火也是怪事。
遗憾的是,今天许多电子商务公司,每天都在做“碰巧”游戏:今天推荐A家产品,明天撤下A家的产品,今天做低价促销,明天又做线下活动。这些决策的改变,没有仪表盘的指示或良好的监控,都是蒙着眼睛在碰巧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15