
别总怪大数据,你的根本问题出在这儿
前段时间有学员和我吐槽道:感觉现在“大数据”已经被戴上了魔咒,和别的企业家交流的时候,不提大数据都不好意思开口说话。
我曾在移动全网营销课程上强调过:企业应该要学会运用大数据的思想,但必须从小数据开始。
在大数据的风头下,很多企业还没开始分析自己公司里的小数据,就火急火燎地研究大数据,结果事倍功半,甚至开始怀疑大数据。
为什么从小数据开始研究呢?什么是小数据呢?
小数据,就是企业个体化的数据。它并不是指数据量小,而是根据企业内在经营的特点,梳理出来的一整套数据。
企业的员工数据、官网数据、电商数据、广告数据、产品数据以及客户关系管理数据(CRM)等都属于小数据。如果能针对性地找出帮助企业做决策的数据,那样决策将更加科学和严谨。
大数据中透露着行业发展规律,而小数据则侧重于深度挖掘,可以用来提升效率和增加营销的机会。
其实企业的业务和管理,主要还是依赖以内部数据为主的“小数据”,也就是企业的自有数据。
小数据最能反映企业经营状况,而且小数据的收集和公司核心运营项目的关联性很强,含金量也更高,还能透过它真正了解经营的状况和消费者的需求。
今天我想重点和大家说一下客户关系管理数据的分析和应用,我觉得可以从三个层面进行分析。
首先,是对现有客户数据的全面分析。
大家都明白,开发新客户的成本越来越高,所以企业应该对客户数据进行全面分析,来解决老客户留存问题。也就是当获得新客户成本越来越高的时候,怎么样留住老客户是每个企业需要考虑的问题。
简单来说,就是要求企业借助数据懂客户,知道客户的背景,他们想要什么。
比如号称全球华人内容手艺人社区的“开稿”,当创始人老谭(谭瑞岗)看到猪八戒有上百万的数据,但是生产出来的却是类似500的网站、50的logo这样的产品,他觉得应该借助小数据来做一件更漂亮的事情。
他知道企业需要什么样的设计,也清楚内容生产者怎样才能和企业的需求匹配起来,而且现在很多企业都在强烈追求优质的、个性化的内容,也愿意为更好的内容掏腰包,所以他一开始就宣称要提供有品质的高端服务。
他没有和猪八戒去比谁拥有更多的数据,而是看谁对数据的挖据更深刻,他对数字进行了严格的把控。
7月份的时候开稿已经有570个邀请入驻的内容手艺人,在他的规划中,这个数字到一定程度时还会进行更严格的控制。
他设想,未来会有更多精彩的内容被创造出来,对“小数据”的深挖也能保证“开稿”客户的服务体验和效率都更胜一筹。
其次,是对数据变量的全面把握,主要用来预测忠诚客户和客户流失的原因。
客户的忠诚度必须建立在客户满意度之上,企业的产品或服务如果能一直让客户满意,客户自然忠诚。
但一旦哪些方面服务的不好,比如客户对产品后续服务或某一体验不满意,反馈的问题没人解决,那客户流失就再正常不过了。
客户数据不仅有静态的,也有动态的。比如客户购买服务或产品的记录及消费记录、客户和企业的互动记录、客户的消费行为及爱好、客户咨询的记录,动态数据的变化会对客户的消费产生很大的影响。
比如当客户有需求或者遇到问题的时候,会打电话或者留言咨询,如果第一次问题没有解决,客户会求助第二次。
但是很多时候两次信息不对等,客户就需要把问题重新讲一遍,很显然,客户会感觉不被重视,体验感变差。
要是第二次问题还没有解决,这个客户很可能就转身投入别人的怀抱里了。
动态数据会被分散到企业的不同部门、不同环节,是很难收集和把握的,所以更需要企业用心去关注、去积累、去分析。
只有通过对数据变量的分析才能发现客户流失的原因,从而不断改进,为留下来的客户提供更好的产品和服务体验。
最后,要把社会、心理、人文等因素考虑进去,可以使数据的分析结果更加准确。
在这里强烈建议有条件的企业建立详细的客户档案,包括客户基本数据、客户交易记录、客户与企业互动记录以及客户反馈的问题,数据越丰富,分析结果就会越准确。
实际上,网络营销就是要去做客户的精准分析,只有了解用户的习惯才能更高效的找到潜在客户并进行成交。
因为客户所做的每一个决策都是有原因的,而企业的每一个行为也都会对客户的决策产生影响。
所以企业可以充分利用自有的数据,挖掘出其中蕴含的客户信息、交易信息以及有价值的客户关注的重点 ,相信全面的分析也能帮助公司降低运营成本,同时提高企业的运营效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30