
如何利用大数据改进银行客户营销
大数据在银行客户营销中的作用,主要是对客户进行详细而全面的分析,即要利用好大数据刻画客户行为的能力,也就是业内常说的“客户画像”。在画像过程中,不仅仅要使用银行内部数据,最好可以做到与外部数据进行对接。
很显然,银行间客户数据共享是不可能的,各家银行自成一体,都是所谓的数据孤岛。但银行可以更好地利用非银行数据。在这方面,蚂蚁金服、京东金融等电商金融,已经形成大量客户群、贸易链、大数据征信等超越金融领域的金融生态圈,其每一次举措都会让大家瞠目。而银行由于自大等原因,并未屈尊来利用这些数据。如果商业银行不早作打算,迟早会被各种电商金融(第二代互联网金融)“将一军”,到时候影响将远大于P2P、众筹和第三方支付等第一代互联网金融。
当然,即使现在只用银行内部数据,也足以给客户行为进行画像。客户在银行办理存款、理财、代销、基金等业务,银行都可以全面掌握其数据。客户有何种支付习惯,比如习惯用支付宝还是微信、绑定的是哪张银行卡、去哪里消费等,银行利用自身数据即可分析。
我们不能说商业银行没有做任何事情,因为各家银行在客户画像基础上进行产品设计和销售方面,都还是做了些尝试,并小有成果,只是在商业银行内部一直未形成气候。究其原因,是业务人员没有数据敏感性、业务部门和大数据分析部门沟通不畅、技术部门沉迷于技术等等。因此,在笔者看来,大数据在客户营销方面的运用还有很大的上升空间。
客户营销使用大数据的三种模式
银行在客户营销中使用大数据的模式主要分为三种:
第一,利用大数据针对特定客户进行画像,完成定点直销。银行可以利用大数据技术,对其新产品针对特定客户进行定点推送。这种技术相对来说已经较为成熟,例如在淘宝上大家看到的推荐商品,就是大数据技术在定点推送上的应用。无论是定点直销的理念,还是相关的大数据技术,目前都已经相对成熟,可以充分使用。
第一,利用大数据针对特定客户进行画像,完成定点直销。银行可以利用大数据技术,对其新产品针对特定客户进行定点推送。这种技术相对来说已经较为成熟,例如在淘宝上大家看到的推荐商品,就是大数据技术在定点推送上的应用。无论是定点直销的理念,还是相关的大数据技术,目前都已经相对成熟,可以充分使用。
第二,利用大数据促进网点营销。对网点而言,客户进入大厅后,通过视频技术可以马上识别客户身份,然后后台筛选出该客户的金融消费习惯和在本行的资产状况,直接推送到营业网点大厅的客服人员手中。客服人员可以借助IPAD等工具了解客户,并主动和客户沟通,根据客户的需求,提供有针对性的产品,提升客户服务的满意度并提高客户营销率。这种做法已经成为事实,网点的去高柜化和网点营销化已经成为网点转型的主流理念。在社会储蓄财富还大量掌握不熟悉互联网的高龄化人群手中的情况下,利用大数据促进网点营销空间还很大。
第三,利用大数据推动产品创新。当银行有了客户画像及其消费习惯,即可有针对性地设计产品。在这一点上,大数据的作用十分明显。而且不仅仅是大数据,,包括生物识别技术、网络通讯技术、电子银行、手机银行等在内的科技进步,最终会使客户在物理网点完成交易的情况越来越少。大数据结合其他技术,可以推动银行业物理网点的裁撤,大大减轻银行成本,提高银行工作效率。未来当越来越多的人利用互联网接受金融服务,基于大数据分析的产品创新,将推动金融服务从物理网点向电子银行、移动金融的转化。
在不久的将来,大数据结合其他科学技术,会提供一个个空中金融服务平台,大数据在服务提供中将成为主要的技术支撑。这是大数据介入后,商业银行在客户营销方面必然会出现的发展趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23