
大数据对新闻业三大革命性改变
在大数据与信息过剩的风险社会,真正有价值的新闻应当是基于数据分析得出的‘预计明天将有暴风雨’式的对公众的忠告、指南、通知、预警。”概言之,大数据时代的新闻传播较之传统的新闻业态是一种深刻的转型,本文集中探讨大数据对于新闻业态重构的若干革命性改变。
一、生产信息提供者层面的变化
(一)个性化信息推荐:新闻生产机制的颠覆性转变
1、基于个性化信息聚合的信息推荐模式
这种模式是对新闻生产机制的颠覆性转变。“个性化信息推荐”首先是基于个性化的信息聚合,即通过人工智能分析和过滤机制,根据个性化需求聚合相关的信息和应用,并以此对信息进行深度智能分析,以实现用户个性化的、动态的需求。信息聚合已经不再是由媒体主导的信息过滤与筛选,而是基于互联网生产逻辑的信息聚合的过程,并借助特征分析、语义网等技术的发展,形成了基于个人兴趣的个性化信息合成和推荐模式。
社交网络和移动互联网的发展,为个性化信息聚合提供了更广泛和更便捷的平台,使深入分析用户标签之间的联系、跟踪用户标签的使用习惯和频率成为可能,并能够以此为用户推荐个性化内容。
2、基于用户兴趣图谱的个性化新闻推荐模式
以“今日头条”APP客户端为例,其有两个最大的特点:一是基于用户兴趣图谱分析的个性化阅读推荐。“今日头条”基于大数据挖掘技术,会有一个所谓的“冷启动”过程,即通过对用户微博账号的分析建立一个“兴趣图谱”,即兴趣模型,原理是根据用户在微博上发布的内容及其所属类别、用户自标签、社交关系、社交行为、参与的群组、机型、使用时间等数据源来推断出用户的兴趣点有哪些。
二是“今日头条”通过对网易、新浪等各大门户网站的新闻进行内容聚合,完成基于“推荐”、“热门”、“好友动态”三个维度向用户进行包括资讯和评论在内的内容推送。
(二)众包、众筹:从信息集成者到社会意义生成者
2006年,互联网杂志《连线》的资深编辑杰夫?豪(Jeff Hawe)在《众包的崛起》(The Rise of Crowd sourcing)一文中提出了“众包”(Crowd sourcing)这一概念。“众包”是指利用集体智慧来搜集与核实信息、报道故事,或者在新闻生产中做出选择。
1、众包新闻
大数据时代,社会化媒体对数据新闻生产影响深远,它既是数据搜集的重要来源,又可以帮助扩大传播影响力。
2、众筹新闻
众筹新闻(Crowd sourcing news),亦称新闻众筹,是指个人或机构向公众募集资金,实现特定的新闻报道计划。相比喜闻乐见的众包新闻生产,众筹新闻尽管开创了新闻生产的新模式,但是得到的评价却是毁誉参半。众筹新闻充分发动公众参与新闻生产,固然增强了记者与受众的互动性,但是也会容易导致丧失传统新闻生产孜孜以求的独立性。
二、媒体层面的变化
(一)“推倒新闻编辑室的那面墙”:数据团队进驻编辑部
大数据新闻的生产模式决定了头脑风暴和奇思妙想的重要性,部门与部门之间的界限日渐模糊。正如英国卫报数据博客编辑西蒙?罗杰斯所指出的“新闻编辑部的布局很有讲究,如果你越靠近新闻编辑部,就更方便对报道进行交流,成为新闻策划进程中的一部分;反之则两者距离越来越远。”
(二)媒体融合、跨界合作与产业升级:大数据时代媒体机构的自我颠覆
除了“推倒新闻编辑室的那堵墙”,让新的数据团队来主导新闻生产外,从媒体自我颠覆的层面来说,还需要加强跨界合作,与社会化媒体、移动互联网结合起来,把不同行业、领域和终端的数据进行聚合,进行关联分析和价值挖掘,增强媒体融合及跨界合作,加速产业升级。
1、加速媒介融合
大数据技术的运用,促进了不同行业、不同领域、不同终端的数据交换和相互融合。11传统媒体联合新媒体正在打造的“云计算”和“全媒体平台”,能够为大数据分析和数据驱动的生产建立庞大的数据库基础和通畅的信息交流整合渠道。同时还可以对数据进行二次价值的挖掘。
2、增强跨界合作
在大数据分析技术运用方面,新闻媒体还面临着很多挑战。数据的来源、加工和挖掘都需要专门的技术人才和设备等,跨界合作,也许是比自己事必躬亲来说是最适合的方式,不仅可以降低成本,而且可以通过合作碰撞出新的火花。
3、加速产业升级
媒介融合和技术发展给媒介集团带来的冲击有目共睹,迫使传统媒体也在加快与互联网媒体融合的步伐,加速产业升级。文汇新民联合报业集团和解放日报报业集团于2013年合并成立上海报业集团,除了对旗下业务板块进行重新整合之外,还将与百度公司合作,开始了与互联网媒体融合的第一步。
三、用户层面的变化
(一)从“传者中心”转向“用户中心”
信息获取方式的多元化与信息的易得性,使得信息与媒体出现“富余化”倾向,信息生产的单位成本不断降低,信息的供应量以每年8%—10%的速度快速增长。媒介市场从“传者中心”向“受者中心”转变,信息的供应也从供不应求的卖方市场开始进入供过于求的买方市场。
(二)从单向变双向:体验至上,提升用户分析价值
转变为以用户为中心的传播模式后,用户的体验和反馈对媒体的改进尤为重要。因此,通过跨媒体的平台来收集用户意见,通过关联分析受众需求、偏好及行为模式,是提升用户分析价值,增强用户体验满意度的有效途径。
以电视媒体为例,可以通过数字电视或者是互联网智能电视的机顶盒,采集与统计受众对节目内容的接触频次、行为轨迹等数据,甚至提取受众在观看电视时快进、暂停产生的收视率数据与传统媒体收视率数据汇总,以此找出受众的兴趣点和喜好所在。大数据时代,结合个性化的数据平台,通过有效的数据采集和受众洞察系统,可以实现节目定制,为受众带来更好的观看体验和推送内容。
本文来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08