京公网安备 11010802034615号
经营许可证编号:京B2-20210330
信息的大数据已成为未来企业竞争致胜的关键
随着互联网技术的不断发展,数据将像能源、材料一样,成为战略性资源。如何利用数据资源发掘知识、提升效益、促进创新,使其为国家治理、企业决策乃至个人生活服务,是大数据技术的追求目标。
在大数据时代,数据中心竞争十分激烈,新的数据分析产品更新飞快。从传统BI、Excel、报表工具,到最新可视化数据分析工具大数据魔镜,各行业可选择的新产品越来越多。很多企业在整体数据入口方面的竞争也变得越来越激烈,这种对于入口级的大数据“争夺战”让很多企业在数据挖掘和收集的技术方面开始加快更新速度。
曾经有一个大数据分析技术专家表示,从目前的大数据市场发展前景来看,大数据时代的竞争大致可以分为三个层面,也就是大数据本身的竞争、大数据技术层面的竞争和大数据思维的竞争。
虽然这三种竞争力都是不可替代的,但最终大部分价值还是必须从数据本身出发来挖掘,并且大数据本身作为公司的一种私有资产,是很难被竞争对手短期复制的,数据的拥有者也成为立足的重要砝码。
企业机会在信息的“数据化”当中
在当前IT行业激烈竞争环境之下,对于入口产品的控制成为了大数据厂商的必争之地,现在是一个万物互联的世界,我们身边的所有事物之间其实都具有“数据化”的联系,所有的事物所产生的信息都是数据。
只不过目前的大数据理论和技术还只是停留在“线下”阶段,只有将“线下数据”转变为“线上数据”,大数据的价值才可能真正意义的释放,同时形成自己的数据竞争壁垒。
硬件竞争成为“入口”
我们常说的数据化一定是伴随着硬件技术的发展延伸而来的,比如,纸笔让有形文字得以记录,万能条码和条形码扫描器使零售进入信息化运营时代,而最新的Google Glasses更是可以将人们的视觉注意力进行“数据化”。
未来,可植入人体的高智能芯片、可穿戴终端、智能网络与物联网等都会成为帮助信息进一步“数据化”的工具。近年来,美国互联网公司的正在增加自身的消费电子化元素,Google、Amazon这些IT行业巨头一直都在从一些消费电子企业身上学习并融合新的元素。
其实这样做的目的并不是为了要争取那一丁点的硬件利润,更多的还是为了拥有一个更加前置产品的数据入口。回归国内,其实在硬件层面的竞争压力也是相当大的,很多企业都是在拥有了大数据的核心竞争力之后,再配合数据思维和数据技术的发展,最终会带来数据价值的实现。
硬件数据能给我们带来什么
通过物联网、车联网等等万物互联的产物已经可以看得出我们的生活方式正在受到数据化的影响,据可靠数据预计,新一代科技产品的出货量和用户量将会是上一代科技产品的10倍量级,那随之而来的则是大量量化用户数据的产生。
不单是对于个人用户,对企业来说也一样,数据化带来的行业竞争开始变得越发激烈,很多不同行业的企业开始利用大数据对自身的优势方面不断扩大化。比如医疗行业,传统的医疗诊断过程更多的依托于“望闻问切”得到的短期的、粗粒度数据,现代医学引入大量的医疗设备,但也仅仅是在医院现场取得的扫描结果。
人类正面临一场新的科技和产业革命。在这场革命中数据是关键,数据分析技术是核心。只有企业通过分析自身掌握的大量数据,生产出符合客户需求的个性化产品,才能顺应真正应对各种机遇和挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12