京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:网络时代的“蒸汽机”
有人说大数据是大“忽悠”,有人说大数据没商业模式,凡此种种都反映出一个问题——大数据落地难。但就此否定大数据,无疑又走到了一个极端。可以把大数据理解为最初的蒸汽机,初期不是也有人驾马车一教高低吗?大数据也是如此!
传统数据挖掘和应用
从业务开始应用IT之日起,人们就没有停止过对数据的挖掘和利用。人们总是希望透过一定的技术方法,透视数据背后所隐藏的秘密。
在传统数据挖掘应用中,OLTP(On-Line Transaction Processing,联机事务处理系统)和OLAP(On-Line Analytical Processing,联机分析处理)是用户最为熟悉的技术应用。
大数据价值和路径
如今,大数据也是如此,根据IDC调查显示,“提高竞争优势”、“削减成本”和“提高客户忠诚度”是用户对于大数据分析的期待。
谈到大数据,很多人知道大数据具有4个V的特点,即Volume、Variety、Value、Velocity,其中,价值密度低(Value)的特点,就注定了没有办法用传统OLAP方法进行大数据处理。
但价值密度低并不意味着数据价值低。众所周知,奥巴马竞选总统,大数据功不可没。大数据带给人们无限的遐想。不要小看Facebook、微博、微信等社交媒体的一个“顶”或“赞”,尽管从个体来讲,其传递的信息价值有限,但从群体高度进行审视,结果将大大不同。
大数据不仅需要思考问题的方法,也需要可以挖掘、探索数据的平台和工具。鉴于传统OLAP的局限,NoSQL和列式数据库技术应运而生。
英特尔至强和大数据先行者们
大数据真正开始落地,始于互联网行业。以Google为代表,他们以x86服务器作为基础硬件平台,在其上构建了以NoSQL为核心的数据存储和处理方式,对外提供各种基于大数据分析和处理的服务,开创了大数据服务的先河。
目前没有人能够准确说出Google有多少台服务器,有人说100万台,也有消息称高达1000万台服务器。这是一个相当惊人的数量。根据相关统计显示,目前全球每年服务器的销量不过120万台。因此,大数据对于计算能力的需求高的惊人。
大数据具有海量、价值密度低的特征。因此,对于掌握大数据的互联网公司而言,如何按照其应用场景及需求对,对如此海量数据进行处理、分析,才是至关重要的。而他们也对于底层基础设施提出了更高的要求。,除了处理能力之外,成本是一个必须考量的因素开放的平台以及超高的性价比也是必须考量的因素。
与之相比,如果采用RISC处理大数据,其成本将难以支撑。很难想象Google用100万台RISC服务器处理数据,不要说100万台,1万台都不是Google可以承受的。随着大数据时代的来临,英特尔也敏锐洞察到了大数据市场的需求和发展,在硬件与软件层面对用户进行全面的大数据技术支持为此,英特尔推出了Hadoop分发版,从技术给用户以支持。
小结
目前大数据应用已经不局限在互联网企业,而是开始向传统行业/企业市场蔓延,以x86服务器为基础,无论是Vertica、Greenplum、GBase等列式数据库,还是Cloudera等Hadoop分布式数据库管理和开发工具,大数据服务提供商,如Splunk、Acitan、SAS、Tibco,从硬件、软件平台到大数据分析、应用和展示,一个完整的产业生态链已经比较成熟,未来值得期待。
毫无疑问,我们正处于一个数据爆炸的时代,移动互联网、社交媒体的发达,为行业/企业研究消费者提供了充足的数据,如何驾驭好大数据,将关系到企业的业务创新。可以说,生长在当下这样的一个时代,企业与用户从没有今日如此之接近,因此大数据堪称未来行业/企业的胜负手。
未来的市场不再是看不见,摸不着的市场,大数据能力的强与弱,既有可能成为企业、社会乃至一个国家、民族的分水岭,人类文明将迎来前所未有的高速成长,历史的车轮将会提速,滚滚向前!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22