
大数据:网络时代的“蒸汽机”
有人说大数据是大“忽悠”,有人说大数据没商业模式,凡此种种都反映出一个问题——大数据落地难。但就此否定大数据,无疑又走到了一个极端。可以把大数据理解为最初的蒸汽机,初期不是也有人驾马车一教高低吗?大数据也是如此!
传统数据挖掘和应用
从业务开始应用IT之日起,人们就没有停止过对数据的挖掘和利用。人们总是希望透过一定的技术方法,透视数据背后所隐藏的秘密。
在传统数据挖掘应用中,OLTP(On-Line Transaction Processing,联机事务处理系统)和OLAP(On-Line Analytical Processing,联机分析处理)是用户最为熟悉的技术应用。
大数据价值和路径
如今,大数据也是如此,根据IDC调查显示,“提高竞争优势”、“削减成本”和“提高客户忠诚度”是用户对于大数据分析的期待。
谈到大数据,很多人知道大数据具有4个V的特点,即Volume、Variety、Value、Velocity,其中,价值密度低(Value)的特点,就注定了没有办法用传统OLAP方法进行大数据处理。
但价值密度低并不意味着数据价值低。众所周知,奥巴马竞选总统,大数据功不可没。大数据带给人们无限的遐想。不要小看Facebook、微博、微信等社交媒体的一个“顶”或“赞”,尽管从个体来讲,其传递的信息价值有限,但从群体高度进行审视,结果将大大不同。
大数据不仅需要思考问题的方法,也需要可以挖掘、探索数据的平台和工具。鉴于传统OLAP的局限,NoSQL和列式数据库技术应运而生。
英特尔至强和大数据先行者们
大数据真正开始落地,始于互联网行业。以Google为代表,他们以x86服务器作为基础硬件平台,在其上构建了以NoSQL为核心的数据存储和处理方式,对外提供各种基于大数据分析和处理的服务,开创了大数据服务的先河。
目前没有人能够准确说出Google有多少台服务器,有人说100万台,也有消息称高达1000万台服务器。这是一个相当惊人的数量。根据相关统计显示,目前全球每年服务器的销量不过120万台。因此,大数据对于计算能力的需求高的惊人。
大数据具有海量、价值密度低的特征。因此,对于掌握大数据的互联网公司而言,如何按照其应用场景及需求对,对如此海量数据进行处理、分析,才是至关重要的。而他们也对于底层基础设施提出了更高的要求。,除了处理能力之外,成本是一个必须考量的因素开放的平台以及超高的性价比也是必须考量的因素。
与之相比,如果采用RISC处理大数据,其成本将难以支撑。很难想象Google用100万台RISC服务器处理数据,不要说100万台,1万台都不是Google可以承受的。随着大数据时代的来临,英特尔也敏锐洞察到了大数据市场的需求和发展,在硬件与软件层面对用户进行全面的大数据技术支持为此,英特尔推出了Hadoop分发版,从技术给用户以支持。
小结
目前大数据应用已经不局限在互联网企业,而是开始向传统行业/企业市场蔓延,以x86服务器为基础,无论是Vertica、Greenplum、GBase等列式数据库,还是Cloudera等Hadoop分布式数据库管理和开发工具,大数据服务提供商,如Splunk、Acitan、SAS、Tibco,从硬件、软件平台到大数据分析、应用和展示,一个完整的产业生态链已经比较成熟,未来值得期待。
毫无疑问,我们正处于一个数据爆炸的时代,移动互联网、社交媒体的发达,为行业/企业研究消费者提供了充足的数据,如何驾驭好大数据,将关系到企业的业务创新。可以说,生长在当下这样的一个时代,企业与用户从没有今日如此之接近,因此大数据堪称未来行业/企业的胜负手。
未来的市场不再是看不见,摸不着的市场,大数据能力的强与弱,既有可能成为企业、社会乃至一个国家、民族的分水岭,人类文明将迎来前所未有的高速成长,历史的车轮将会提速,滚滚向前!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04