
电信业务领域的全面开放,激烈竞争使得目前的中国电信市场烽烟四起。“客户-产品-市场-利润”成为目前各电信运营商的基本发展思路。中国电信集团去年在全国推出营销分析系统,该系统具有主题分析、专题分析、统计报表等功能,基本解决了“发生了什么?”这个问题。但是,在海量的业务数据基础上,是否隐含着某些内在的商业规律,如何能够发现这些商业规律,做到有针对性营销,实现从数据到知识再到价值的提升呢?我们想到了数据挖掘技术。
数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。
当前中国电信在一些省做MR的试点。MR主要采用聚类和预测挖掘技术,实现了客户分群模型和流失预测模型的建立和应用。通过客户分群模型,对客户进行细分,找出有相同特征的目标客户群,有针对性的进行营销;通过流失预测模型,锁定流失的高危客户,进行事前挽留,取得了一定的效果。本文主要想介绍一下数据挖掘的另一种应用——交叉销售模型(cross-sell model)。
在电信行业的今天,大量发展新的客户越来越困难,而且成本比较高,企业要做的不仅要挽留目前的客户,而且还必须通过有效的交叉销售和提升销售来最大化他们的价值。
交叉销售和提升销售提供预先集成的模式和流程来帮助您增加收入、预测各位客户的“下一步?交叉销售和提升销售让您能够描述购买了大量产品或产品升级的客户,然后您可以对其它客户应用类似的分析,以确定谁是最好的交叉销售和提升销售的目标客户。
交叉销售模型的两个阶段
制作交叉模型的两个阶段为:关联规则的创建和如何使用WEB表现方式展现,使用决策树进行目标客户的选取。本次挖掘的目的是希望发现目前选择多个套餐的客户在套餐组合方面是否有什么规律,哪些套餐容易被客户同时选择,并根据这个规律,发现可能选择这种组合的其它客户,然后对其进行重点的营销,提高营销的成功率,降低营销成本。
工具的选择
Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台,Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。它同那些仅注重模型的外在表现而忽略数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比,优势十分明显。Clementine强大的数据挖掘算法,丰富的输出展现方式,贯穿业务流程的设计思路,可以帮助企业在缩短投资回报周期的同时极大地提高投资回报率。
数据的准备
数据的准备指在商业理解(而非技术理解)的基础上进行数据的抽取、转换、装载工作。这要求挖掘人员对现有业务系统比较熟悉,而且必须具有一定的数据汇总工作能力。
数据源的分析
在分析过程中主要有二方面:客户的电信消费属性,客户的人口统计学等社会学属性 。一般来讲,客户的电信消费属性在电信运营商的系统上是较为完整的,可以从计费系统、营销渠道系统、网间结算系统、10000号系统、智能网系统等得到客户的通话详单、账单、客户服务记录信息,运营商只要从客户的所有电信消费角度进行整理,就可以得到其电信消费属性。基于客户人口统计学等社会学属性的分析,对电信企业的经营决策很有价值,但很难做到,主要原因是基础数据缺乏。决策分析所需要的客户社会学属性包括地理因素、人口因素、心理因素、行为因素等很难取得。分析这些因素对电信运营商的市场营销决策有着重要作用,因而需要通过各种方式和渠道收集这些数据。目前,电信运营商解决这个问题的办法主要有两个:一是对客户进行普查,其工作量和难度相当大;二是通过积分奖励等措施搜集部分高消费客户的社会属性资料。
挖掘信息的内容
在挖掘所使用的信息中,我们主要包括三部分:客户详细描述,客户选择的套餐,客户的消费行为。(见下表)
现在我们找出了客户喜欢交叉选择的套餐,但是我们不知道哪些客户喜欢进行这样的交叉选择,下来采用决策树算法来进行目标客户群的锁定。(见下图)
总结
交叉销售模型不仅可以使用在用户套餐的交叉选择上,还可以指导客户经理进行新产品的推广。该案例的演示,说明了交叉销售模型的创建流程,指导市场营销策略的制定,最终可以提升客户的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15