京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据实践 基础架构先行_数据分析师
大数据被认为是下一个创新、竞争和生产力的前沿,谁率先抓住大数据的先机即意味着能够在未来市场竞争之中取得杆位。当前大数据市场除了传统厂商之外,还同时涌现出一大批创新技术厂商,并且像零售、金融、互联网、政府机构、科研教育等行业用户对于大数据的认知与认可大大超过了以往任何一项IT技术。归根结底,这是因为大数据能够对业务产生最直接的影响。大数据当前处于上升期和快速发展时期,人们当前对于大数据的期望值也是越来越高。
大数据时代下的基础架构挑战
毫无疑问,大数据时代下,要想实现更大的业务价值,首先需要解决的就是基础架构问题,基础架构之中存储又是重中之重。当前趋势下,社交媒体、移动互联网、物联网、多媒体应用等趋势兴起使得非结构化、半结构化数据大幅增长,加上传统的结构化数据增长,用户的整体数据量呈现出海量、高增长的状态。如何面对数据源繁多、数据增长速度快速、数据种类丰富化、数据存取形式复杂化以及应用需求多样化就成为当前大部分用户首要面对的挑战和难题。
著名咨询机构麦肯锡认为,大数据是指其大小超出了典型数据库软件的采集、存储、管理和分析等能力的数据集。大数据公认的4V特征包括:容量、类型、速度以及价值(volume、variety、velocity和value)。著名调研机构IDC对于大数据技术定位为:通过高速捕捉、发现和/或分析,从大容量数据中获取价值的一种新的技术架构。另外一方面,我们也可以发现当前对于大数据的一个误区广泛存在于用户之中:当前仍然有很大一部分用户认为新兴起的Hadoop技术、商业智能分析(BI)这些就意味着大数据,他们认为掌控好Hadoop或者BI即可掌控大数据。事实上,大数据不仅仅是Hadoop或者商业智能分析,这些热门技术是大数据分析和处理过程中当前热门的领域,而要想真正实现大数据的价值、为业务发展服务,则需要从全面的角度考虑。
因此,传统存储产品由于自身的设计缺陷,在扩展性方面、与上层应用集成度、高性能、自动化能力、成本等方面已经很难满足大数据诸多的存储特征,根本很难肩负起企业大数据存储、分析以及应用的诸多需求。尤其当前数据的类型丰富程度、容量愈发变大的情况下,并且在业务部门跟IT日益紧密的趋势下,对于数据的存储与分析的速度和性能要求越来越高,对海量数据的快速、高效存储绝对应该是大数据时代存储系统的第一必备要求,否则大数据后续相关的大数据分析、大数据处理都将成为空谈。
看清大数据趋势 不再雾里看花
在大数据时代下,大数据存储产品显然要比传统存储产品考虑更多因素,目前市场中已经有很多专门为大数据应用设计和开发的存储系统,这其中包括国内和国外诸多厂商的产品。虽然有很多产品可供大家参考和选择。但是对于用户而言,能够看清大数据基础架构的发展趋势,则可在基础架构建设方面不再雾里看花。
趋势一:容量大、易扩展。众人皆知,大数据的容量往往是PB级别,甚至有些用户的数据量开始达到EB级别,这要求未来的存储系统能够具备容量大、易扩展的特点。
趋势二:高性能。大数据的一大特征即为速度,要求存储系统能够快速存储数据,因此这要求存储系统的响应速度能够符合大数据的要求。
趋势三:多集成。大数据时代下,数据来源广泛与复杂,不同类型的数据访问、处理和分析的方式不同,这就要求大数据时代下存储系统的接口集成化,使得大数据存储系统能够应对不同的数据需求。
趋势四:自动化。由于大数据使得数据量大幅增加以及数据处理流程、方式更加复杂,给存储系统的管理、维护变得更加复杂。因此,管理自动化也是衡量大数据存储系统的重要趋势。
趋势五:安全可靠。大数据最为核心的价值所在即为数据,因此确保数据的安全可靠也是大数据存储需要重点考虑的因素。保证数据的可用性、完整性和持久化都是未来存储系统所必备的趋势。
趋势六:弹性成本。大数据并不意味着用户必须要在基础架构上一次性投入大额成本,具有弹性、可扩展的存储系统能够帮助用户实现弹性成本,让不同层面的用户都能在大数据浪潮中淘金。
综述
追本溯源,在大数据时代下,我们往往不能只将眼光盯在数据分析与处理层面,用户在尝试大数据解决方案之前,更应从全面角度去审视自身的基础架构是否适合大数据未来的需求与发展——大数据实践,基础架构先行。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01