
谁会真的在乎如何定义大数据?
看着那么多人在争论如何定义大数据,感觉非常有意思。总是会有人提出不同的建议,即便只是存在细微的差别。在任何规则的背后也都会有潜在的例外。因此,从商业角度,而不是单纯的学术研究方面来讲,我认为在这样的争论上花很多精力并没有太大的实际价值。还是让我们来一探究竟吧。
数据分析的目的是为了利用数据去做出更好的商业决策。这一切都在于它的商业价值。判定数据本身究竟是“大”与否并没有增加任何的商业价值。业界需要关心的问题其实很简单:是否存在一些其本身具有很高的潜在价值,但目前仍未被收集的数据源?如果答案是肯定的,那么它就需要被收集并分析。这便是一个商业人士应该关心的核心问题。他们并不需要去在意数据本身的大还是小,或者介于两者之间。
让我们来想象一个应用场景,一群商业以及IT人士聚集在一个大型会议室,讨论一项新的数据源。作为座谈的一部分,他们达成一致协议,认为这项新的数据源应当(或不应当)被认定为大数据。这份结论对推动会议进程起到了任何作用吗?什么也没有。真正推动会议进程的,是这只商业团队认可这项新的数据资源是有用的并且值得分析;是这只IT团队决定如何基于数据本身的特点以最佳的方式使得数据可用。只有当致力于使数据付诸于工作而不仅仅停留在语义的定夺上,才会有真正的进展。
如上所说,一旦决定某项数据源是重要的,那么数据本身的特点会影响我们如何获取它以及如何将其应用于分析过程。举例来说,如果这项数据通常是大数据并且/或者是松散的,我们可能会需要利用某些与大数据相关的技术。但是,这仅仅是出于一种技术实现方面的考虑。而关于这项数据,做出是否具有足够价值去收集的重大决定,与我们将其置于怎样的语言定义范畴,没有任何的关系。
另一个通常性的错误是将大数据等同于具体工具或技术的运用。但是,工具和技术的应用是广泛的,并不仅仅局限于大数据。举例来说,如果我想为一家全球性组织做一项关于情绪与所有社会媒体评论的分析,我可能有大量的数据需要处理。我还需要某些复杂的文字分析工具和情感计算法则。现在让我们来假设我想要做一项关于情绪与10条对我的评论的分析。猜猜会怎样呢?我需要完全相同的文本分析工具和情感计算法则。我只是不需要用相同的标准去衡量他们。
通过以上观点可以看到,更多与“大数据”相关的其实是一个“不同数据类型”的组合。文本数据需要不同的工具和技术。半结构化数据比起传统的结构化数据需要更多不同的处理。但是,这些数据类型对于无论是大型还是小型数据而言都需要不同的处理方式。
对于负责大数据分析技术实现的人群,还是有必要去练习理解各类数据的不同,以及他们是被如何定义的。我并不是说在这个领域里的所有努力都是浪费时间。如果你连数据本身所包含的内容都不理解,那你如何去开发处理数据的工具以及技术呢。我仅仅是认为,我们过多的强调了涉及客户的主题,例如那些实际上并不用去担心的商业客户。
下一次当有人再向你询问如何定义大数据,或者某一项数据来源是否应当被认定为大数据的时候,考虑下你将如何回答。你们真的需要这样的讨论吗?或许你们是否需要换个角度,更多的去研讨这项数据可能会具有怎样的价值以及应当怎样予以分析?我相信,如果选择了后者,你们将会取得更大的进展,获取更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23