京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谁会真的在乎如何定义大数据?
看着那么多人在争论如何定义大数据,感觉非常有意思。总是会有人提出不同的建议,即便只是存在细微的差别。在任何规则的背后也都会有潜在的例外。因此,从商业角度,而不是单纯的学术研究方面来讲,我认为在这样的争论上花很多精力并没有太大的实际价值。还是让我们来一探究竟吧。
数据分析的目的是为了利用数据去做出更好的商业决策。这一切都在于它的商业价值。判定数据本身究竟是“大”与否并没有增加任何的商业价值。业界需要关心的问题其实很简单:是否存在一些其本身具有很高的潜在价值,但目前仍未被收集的数据源?如果答案是肯定的,那么它就需要被收集并分析。这便是一个商业人士应该关心的核心问题。他们并不需要去在意数据本身的大还是小,或者介于两者之间。
让我们来想象一个应用场景,一群商业以及IT人士聚集在一个大型会议室,讨论一项新的数据源。作为座谈的一部分,他们达成一致协议,认为这项新的数据源应当(或不应当)被认定为大数据。这份结论对推动会议进程起到了任何作用吗?什么也没有。真正推动会议进程的,是这只商业团队认可这项新的数据资源是有用的并且值得分析;是这只IT团队决定如何基于数据本身的特点以最佳的方式使得数据可用。只有当致力于使数据付诸于工作而不仅仅停留在语义的定夺上,才会有真正的进展。
如上所说,一旦决定某项数据源是重要的,那么数据本身的特点会影响我们如何获取它以及如何将其应用于分析过程。举例来说,如果这项数据通常是大数据并且/或者是松散的,我们可能会需要利用某些与大数据相关的技术。但是,这仅仅是出于一种技术实现方面的考虑。而关于这项数据,做出是否具有足够价值去收集的重大决定,与我们将其置于怎样的语言定义范畴,没有任何的关系。
另一个通常性的错误是将大数据等同于具体工具或技术的运用。但是,工具和技术的应用是广泛的,并不仅仅局限于大数据。举例来说,如果我想为一家全球性组织做一项关于情绪与所有社会媒体评论的分析,我可能有大量的数据需要处理。我还需要某些复杂的文字分析工具和情感计算法则。现在让我们来假设我想要做一项关于情绪与10条对我的评论的分析。猜猜会怎样呢?我需要完全相同的文本分析工具和情感计算法则。我只是不需要用相同的标准去衡量他们。
通过以上观点可以看到,更多与“大数据”相关的其实是一个“不同数据类型”的组合。文本数据需要不同的工具和技术。半结构化数据比起传统的结构化数据需要更多不同的处理。但是,这些数据类型对于无论是大型还是小型数据而言都需要不同的处理方式。
对于负责大数据分析技术实现的人群,还是有必要去练习理解各类数据的不同,以及他们是被如何定义的。我并不是说在这个领域里的所有努力都是浪费时间。如果你连数据本身所包含的内容都不理解,那你如何去开发处理数据的工具以及技术呢。我仅仅是认为,我们过多的强调了涉及客户的主题,例如那些实际上并不用去担心的商业客户。
下一次当有人再向你询问如何定义大数据,或者某一项数据来源是否应当被认定为大数据的时候,考虑下你将如何回答。你们真的需要这样的讨论吗?或许你们是否需要换个角度,更多的去研讨这项数据可能会具有怎样的价值以及应当怎样予以分析?我相信,如果选择了后者,你们将会取得更大的进展,获取更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11