
大数据时代:解析大数据的幕后推手是什么
当今,信息产业发达国家,如美、英、德、日等此前已将大数据作为国家核心竞争力提升为了国家战略。数字主权将是继边防、海防、空防之后,又一个大国博弈的空间。
一、大数据的定义和特征
大数据并非现在才出现。中国东汉时期人口已达6千多万,这显然是一个大数据,但不是今天讨论的大数据。维基百科对大数据的定义为:“大数据意指一个超大、难以用现有常规的数据库管理技术和工具处理的数据集。”大数据研究的目的是将数据转化为知识,探索数据的产生机制,进行预测和政策制定。
大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Volume、Variety、Value和Velocity),即体量大、多样性、价值密度低和处理速度快。大数据的“大”没有精确的定义,不同的时代对应着不同的大数据规模。二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。三是价值密度低。大数据分析犹如“大海捞针”。四是处理速度快。
二、解读大数据的主要成因
大数据的背后推手有哪些?以下三大因素是大数据的主要成因:
第一,人类保持数据的能力增强。
预计2020年,1太硬盘的价格将下降到3美元,相当于一杯咖啡的价格。一所普通大学的图书馆,其馆藏量大约就一两个太。
第二,人类生产数据的能力增强。
从2004年起,以脸谱网(Face book)、推特(Twitter)为代表的社交媒体相继问世,拉开了互联网的崭新时代—2.0时代。随着社交媒体的问世,带来以下三大变化:
一是社交媒体把交流和协同的功能推到了一个登峰造极的高度。在此之前,互联网的主要作用是信息的传播和分享,其最主要的组织形式是建立网站,但网站是静态的。进入Web2.0时代之后,互联网开始成为人们实时互动、交流协同的载体。
二是社交媒体推动数据总量骤然增加。由于社交媒体的横空出世,人类自己开始在互联网上生产数据,例如发推特、微博和微信,记录各自的活动和行为,全世界的网民都是数据的生产者,每个网民都犹如一个信息系统、一个传感器,不断地制造数据,这引发了人类历史上迄今为止最庞大的数据爆炸。
三是社交媒体使人类的数据世界更为复杂。数据包含两类数据:结构化数据和非结构化数据。在大家发的微博中,你的带图片、他的带视频,大小、结构完全不一样。因为没有严整的结构,在社交媒体上产生的数据,也被称为非结构化数据。目前全世界的数据大约75%都是非结构化数据。这部分数据的处理,远比结构严整的数据困难。
第三,人类使用数据的能力增强。
大数据之大,不仅在于其大容量,更在于其大价值。最根本的原因,是人类使用数据的能力取得了重大突破和进展。
三、大数据应用
主要有以下四个方面:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。
大数据时代,面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,将催生一体化数据存储处理服务器、内存计算等市场。
第三,大数据利用将成为提高核心竞争力的关键因素。
各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据分析可以使零售商实时掌握市场动态并迅速做出应对;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据在促进经济发展、维护社会稳定等方面的重要作用已开始得以发挥。
第四,大数据时代科学研究的方法手段将发生重大改变。
抽样调查是社会科学的基本研究方法。但在大数据时代,不需要通过抽样,而是通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16