
社会化数据分析:透过数据看本质
网络无秘密,在这个数字化的时代,你在社交网络上的一举一动都会被记录在案,而这些信息汇聚成数以TB计的数据,面对这些庞大的数据,你会下意识觉得这里面肯定有许多有价值的东西,但往往百思不得其解。这是因为社会化数据并不像其他数据一样,或者是不能被校准,又往往是含糊不清的,以致于无法用传统的分析工具进行分析。
例如,对于Facebook的数据流,乍一看或许会有人认为,用户的“like”和“dislike”是唯一可以直接利用的部分,然而社会化营销所利用的数据远远比传统营销要更为广泛,这种自由流动的数据流,以及这些数据流背后的用户行为,让我们发现许多新的问题,或者从中找到解决老问题的新方法。
因此,相对于那些一目了然的数据,在社会化数据分析中,更重要的是了解数据的含义,透过数据看本质,才能挖掘出那些隐藏在数据背后的东西。
问题在于:社会化数据可以告诉我们什么?我们如何满足这些新的需求,尤其是在他们已经开始挑战一些固有的做法,使得传统的流程和组织结构开始松动,我们又如何从商业层面作出反应?
社会化数据显示我们是谁(以及我们认为我们是谁)
许多社会化数据反映了用户的兴趣、专业知识背景、社会观、技能和经验,有的信息是在用户自己填写的资料中反映出来的,但更多的是从他们加入的小组、讨论的话题中简洁反映出来的。企业社交媒体工具可以将这些隐藏的信息变得一目了然,让棘手的问题易于解决,增加对员工的了解。例如说,当有员工在遇到技术问题时可能不知道之前是否有同事也遇到过类似的情况,但利用SocialCast等社交软件,你可以了解到其他同事过去的项目经验,从而获得支持与帮助,迅速解决客户的问题,降低客户支持的成本,提高用户满意度(Linkedin也可提供类似功能)。
当经理的可能在新产品开发时会这么想:“谁有能力和兴趣来开发这个产品?他们过去做过什么项目,在团队中担任什么未位置?”这一点Facebook这家做社交网站的公司做得特别好,通过社交媒体来增加内部的透明度,使得公司内每个人、每个领域、每个团队的优势与不足一目了然。
揭示用户对公司和产品的真正看法
对于企业来说,社交媒体的用途不仅仅是获得粉丝和推送广告,而是可以从社会化数据中进一步分析,得出明确的产品提供信息和反馈。例如,英国移动运营商Giffgaff就利用社交媒体鼓励用户设计自己钟爱的手机,为用户提供客户服务。又或者说,企业家可以通过社会化数据分析了解某个新闻报道对品牌的影响,从而作出进一步的决策。像Prosodic这样的公司可以实时监控社会化情绪信息,为营销者给出消息发布的最佳时间建议,提高用户的参与度和效果。
揭示我们做什么,不做什么
通过对社会化数字信息的收集和整理,我们可以得出个人的网上行为习惯以及地理信息等,这将为网络行为方式及互动打开一扇大门。
例如,我们可能觉得高绩效团队可遇不可求的(尤其对服务行业来说更是如此)。但德勤咨询公司通过对其员工的社会化数据(包括电话,电子邮件,在线互动)的分析,并将其与数据指标(人均收入、盈利能力、工作人员更替等),他们发现了高绩效团队把的一些内在规律。值得一提的是,虽然德勤致力于打造高凝聚力的团队,但高绩效团队的这种凝聚力更多的是取决与外部联系而非内部相互作用。
MIT媒体实验室针对呼叫中心的一项研究也发现,呼叫中心在“回呼”沟通或者为正式的会议提供交互服务的时候效率最高。该研究有望更好地预测团队绩效指标,并为事前干预提供手段。
如何通过社社会化数据分析得出结论?
社会化数据分析最大的挑战是发现数据之间的内在规律,以及发现这些数据与用户行为之间的联系。如果你需要建立一个“数据说话”的组织,那么你需要学会如何使用社会化数据,而这正是大多数组织做不到的。
以下问题可以帮助你更好地帮助你更好地利用你的社会化数据:
你需要用数据来回答什么问题?如果你不知道你的目的是什么,你可以从与你的业务相关的问题开始,同时不断发现新的问题。
每个数据意味着什么,他们之间的关系如何?不同平台不同类型的数据可能会需要不同的工具和解释,例如说,“社交网络分析”一词在Linkedin代表的是你的职业关系情况,而在Facebook则是代表你的个人关系。
以上答案将在何种程度上改变你的工作方式?到底怎样的社会化数据指标才能说明你做得好或者不好?实时的社会化数据意味着我们可以划一块试验田,按照数据的反馈设计自适应业务策略,对数据作出反映,将业务流程与数据指标联系起来。
如果通过数据得出的结论出乎预料或者与惯例相违,你如何将这种不同让他人知晓?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08