
社会化数据分析:透过数据看本质
网络无秘密,在这个数字化的时代,你在社交网络上的一举一动都会被记录在案,而这些信息汇聚成数以TB计的数据,面对这些庞大的数据,你会下意识觉得这里面肯定有许多有价值的东西,但往往百思不得其解。这是因为社会化数据并不像其他数据一样,或者是不能被校准,又往往是含糊不清的,以致于无法用传统的分析工具进行分析。
例如,对于Facebook的数据流,乍一看或许会有人认为,用户的“like”和“dislike”是唯一可以直接利用的部分,然而社会化营销所利用的数据远远比传统营销要更为广泛,这种自由流动的数据流,以及这些数据流背后的用户行为,让我们发现许多新的问题,或者从中找到解决老问题的新方法。
因此,相对于那些一目了然的数据,在社会化数据分析中,更重要的是了解数据的含义,透过数据看本质,才能挖掘出那些隐藏在数据背后的东西。
问题在于:社会化数据可以告诉我们什么?我们如何满足这些新的需求,尤其是在他们已经开始挑战一些固有的做法,使得传统的流程和组织结构开始松动,我们又如何从商业层面作出反应?
社会化数据显示我们是谁(以及我们认为我们是谁)
许多社会化数据反映了用户的兴趣、专业知识背景、社会观、技能和经验,有的信息是在用户自己填写的资料中反映出来的,但更多的是从他们加入的小组、讨论的话题中简洁反映出来的。企业社交媒体工具可以将这些隐藏的信息变得一目了然,让棘手的问题易于解决,增加对员工的了解。例如说,当有员工在遇到技术问题时可能不知道之前是否有同事也遇到过类似的情况,但利用SocialCast等社交软件,你可以了解到其他同事过去的项目经验,从而获得支持与帮助,迅速解决客户的问题,降低客户支持的成本,提高用户满意度(Linkedin也可提供类似功能)。
当经理的可能在新产品开发时会这么想:“谁有能力和兴趣来开发这个产品?他们过去做过什么项目,在团队中担任什么未位置?”这一点Facebook这家做社交网站的公司做得特别好,通过社交媒体来增加内部的透明度,使得公司内每个人、每个领域、每个团队的优势与不足一目了然。
揭示用户对公司和产品的真正看法
对于企业来说,社交媒体的用途不仅仅是获得粉丝和推送广告,而是可以从社会化数据中进一步分析,得出明确的产品提供信息和反馈。例如,英国移动运营商Giffgaff就利用社交媒体鼓励用户设计自己钟爱的手机,为用户提供客户服务。又或者说,企业家可以通过社会化数据分析了解某个新闻报道对品牌的影响,从而作出进一步的决策。像Prosodic这样的公司可以实时监控社会化情绪信息,为营销者给出消息发布的最佳时间建议,提高用户的参与度和效果。
揭示我们做什么,不做什么
通过对社会化数字信息的收集和整理,我们可以得出个人的网上行为习惯以及地理信息等,这将为网络行为方式及互动打开一扇大门。
例如,我们可能觉得高绩效团队可遇不可求的(尤其对服务行业来说更是如此)。但德勤咨询公司通过对其员工的社会化数据(包括电话,电子邮件,在线互动)的分析,并将其与数据指标(人均收入、盈利能力、工作人员更替等),他们发现了高绩效团队把的一些内在规律。值得一提的是,虽然德勤致力于打造高凝聚力的团队,但高绩效团队的这种凝聚力更多的是取决与外部联系而非内部相互作用。
MIT媒体实验室针对呼叫中心的一项研究也发现,呼叫中心在“回呼”沟通或者为正式的会议提供交互服务的时候效率最高。该研究有望更好地预测团队绩效指标,并为事前干预提供手段。
如何通过社社会化数据分析得出结论?
社会化数据分析最大的挑战是发现数据之间的内在规律,以及发现这些数据与用户行为之间的联系。如果你需要建立一个“数据说话”的组织,那么你需要学会如何使用社会化数据,而这正是大多数组织做不到的。
以下问题可以帮助你更好地帮助你更好地利用你的社会化数据:
你需要用数据来回答什么问题?如果你不知道你的目的是什么,你可以从与你的业务相关的问题开始,同时不断发现新的问题。
每个数据意味着什么,他们之间的关系如何?不同平台不同类型的数据可能会需要不同的工具和解释,例如说,“社交网络分析”一词在Linkedin代表的是你的职业关系情况,而在Facebook则是代表你的个人关系。
以上答案将在何种程度上改变你的工作方式?到底怎样的社会化数据指标才能说明你做得好或者不好?实时的社会化数据意味着我们可以划一块试验田,按照数据的反馈设计自适应业务策略,对数据作出反映,将业务流程与数据指标联系起来。
如果通过数据得出的结论出乎预料或者与惯例相违,你如何将这种不同让他人知晓?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29