
创业成与败,做好数据分析才是关键
在这竞争与机遇并存的数字信息化时代下,传统意义上的管理分析和决策手段发生了微妙的变化,已经不能再靠旧的思维模式去做决策。在产品运营过程中,总会遇到各种各样的问题,比如某款产品数据一直良好,某段时间数据突然跌落,是因为市场宣传力度减弱,还是因为用户生命周期上限,又或者是因为其他竞争产品的冲击呢?这个时候,利用数据分析才是找到问题原因的关键!
很多创业公司在经营的各个环节中都会产生大量的数据,做好数据分析工作,对公司的运营及策略调整起着至关重要的作用,那么不同阶段的数据分析有何不同呢?
一般来说,创业公司会经历产品4个生命周期阶段。
第一个阶段,叫冷启动。这个时候公司特别早期,天使轮或者A轮,甚至融资还未成功。处在这个阶段的公司,用大数据驱动是一个伪命题——因为客户数量有限,样本性不足。他们需要更多地去了解潜在客户的需求,去“求”客户来用这个产品。
第二个阶段,增长前期。就是冷启动接近完成。有经验的创业者,会开始重视和增长有关系的一些核心指标,比如说日/月活跃,留存度。这些指标的目的不是为了衡量产品当前当下的表现,而是为了未来做增长时有可比较的基准。
第三个阶段,增长期。这个阶段就能看出来好的创业公司和普通创业公司的巨大差别——效率。无论PR还是做活动,都需要人力和时间成本。如何在增长中,找到效率最高的渠道?这个我觉得,是创业公司之间PK的核心竞争力。如果不做数据驱动,靠直觉,一次两次可以,但没有人能进赌场连赢一万次。所以,直觉需要和数据进行结合,这样企业能迅速优化各个渠道,来提高单位时间的转化效率。
第四个阶段,变现期。业务变现,要求很高的用户基数。一般互联网产品,其中一小部分高活跃、体验好的用户,会转化为付费用户。类似一个漏斗,不断地去筛,这里面就是要拼运营的效率了。比如说,电商用户的转化漏斗一般是:访问——注册——搜索——浏览——加入购物车——支付,或者到未来的退货。这是非常非常长的一个漏斗,真正要做好数据化运营,要对漏斗的每个环节持续地进行追踪。
在麦客加看来,一个好的企业,特别是以后要做营收的企业,必须要关注各个部门各个环节的转化效率。这种转化效率,要达成的手段,可以通过市场营销的方法、产品改进的方法、甚至客户运营的方法。而其中每个环节小幅提高,加在一起就是一个倍数的提高。总之,在企业运营过程中,数据分析始终扮演着至关重要的角色!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30