
零售行业数据分析,你必须要知道这些
零售行业对数据的灵活性,时效性和及时性的要求相对会比较高,但是零售行业的数据会比较大,指标比较复杂,所以导致大家在传统的ERP的系统中,很难很好的去做数据分析,有些零售企业的规模不小,但是实际上在管理方面是非常的粗狂,比如说,在某一次盘点当中,还存在着两年前的货品,它的库点存了两年,这样的经营状态可能在以往没有什么太大的问题,但对于现在来说,电商行业在宏观上冲击比较大,整个的宏观经济会比较有影响,对于消费者来说,会不太敢消费。但从数据上来看,整个零售行业的消费的基点是越来越高的,生长也是非常的快。那么对于零售行业来说大数据的概念是什么呢?又该如何从技术上解决大数据分析的难点?要怎样才可能发挥大数据的价值呢?
电商对于线上传统零售商行业的冲击是非常大的,在2015年,双11阿里巴巴的成绩单!1天912亿,增长60%。京东则销售了2852万件3C商品。这是在以往的传统的零售行业是难以想象的一天能够卖出这么多的商品。现在的整个零售行业,根据国家统计局数据显示,2015年全年社会消费品零售总额300931亿元,比上年名义增长10.7%。全年全国网上零售额38773亿元,比上年增长33.3%。其中,实物商品网上零售额32424亿元,增长31.6%,占社会消费品零售总额的比重为10.8%;大家可以从中看出来的一个趋势,电商有可能在未来统治零售业的江湖。而早在2012年的一个电视节目上,王健林和马云曾设下赌局,"10年后,如果电商在中国零售市场份额占到50%,我给马云一个亿。如果没到,他还我一个亿。"
那么为什么电商可以踩着传统零售上位,尽享风光?
我们不妨来分析一下电商的核心竞争力是什么?是因为啥都能买到?信息透明?亦或是交易成本低?......
在我个人看来,电商的核心竞争力在于,通过海量的数据处理,让我们做购买的决定时,变的更轻松,更靠谱。举例来说,我们在京东上买东西,搜索空气净化器这类商品时,它首先会告诉你某个商品有多个人评价,评价越多,也就意味着越多人买;当你点击去之后,就可以看到好评度是95%,还是98%?如果是在360浏览器中打开的话,还有一个价格趋势,告诉你历史价位走势如何,其他电商平台是不是更便宜?除此之外,还有其他同类或同价位商品的推荐与排名。有了这些信息,你就掌握了做一个购买决策时的几个关键信息:
(1)这款商品好不好卖?
(2)这款商品口碑好不好?
(3)这个价格便不便宜,现在是不是最便宜的时候?
(4)有没有其他更好的商品?
我们再尝试到线下的电器店去逛逛:找到空气净化器的专柜时,几个热情的不同品牌的导购员会迎上来,每个人都说自己的好,让你不知所措。看了价格,根本不知道这个价格是能讲价还是不能讲价,如果能讲价,也不知道自己谈下来的价格是不是最低的价格。于是乎,众多的不确定性,导致我们一定是逛完国美再逛苏宁,最后,极有可能是因为一些完全不重要的赠品让我们买了单。
对比一下,两种购物的体验,差别在哪里?一个是清清楚楚,一个是糊里糊涂。那为什么电商在没有看到实物的情况下,却可以给人明白消费的体验呢?--这就是大数据的价值。换言之,电商核心的竞争力就是大数据的利用能力。
其实大数据对零售行业来说,就是一味药,不吃也可以(可能是慢慢等死,也可能快速被市场淘汰!),吃了一定会有效,但份量多少,要吃多久,都暂时没有定论,所以,药不能停!首先,遇到问题的时候切记不要太着急,但也不可放任不管。企业在不断的去尝试,寻找不同的解决方法,但其实这是在浪费时间,因为它没有从根本上找到问题的根源。不管你用什么样的管理工具管理手段,在整个过程当中,人才是主体,是需要时时的查看,时时关注,时时分析,只有这样才可以不断改善我们所关注的点。不断的持续下去,这样的问题才可以在根源上解决,要从根本上理解和分析大数据的难点。
从技术上看,要如何解决数据量大的问题?我们可以采用分布式存贮与计算解决方案、内存式计算方案和OLAP方案。这里我是推荐大家使用OLAP方案,因为它在技术上,提前做聚合,查询的时候不在是做计算,只是浏览,这样就可以减少内存和CPO资源,它的优点是利用空闲的时间,帮你把各种需要分析的数据提前算好,对于硬件的资源来说是没有任何的依赖,而且成本低,上手容易。对于数据质量不好该怎么办,可以使用Excel表来维护,可以把手工维护的资料把握到BI的系统。不同业务系统之间的数据逻辑关联有缺失,可以通过规则的建立和数据清洗的方式的处理来解决。
业务部门的需求老是变怎么办?可以通过IT人员帮业务人员用专业BI工具开发报表,或者购买一个工具让业务部门自行灵活的查询分析。这两个途径都是可行的。第一种途径则需要IT人员要有专业的能力和大量的员工,但这不是一个很好的解决方案,因为你会发现同一张的报表给不同的人,总能从中挑出一些毛病出来。最好的方案是工具可以比较好的满足业务人员自给自足的需求,那么怎样才能做好自助的分析呢?从商品维度、变量和指标出发,来分析业务部门各方面的需求。我们用到的BI系统应该是不依赖于各项的报表,是当你需要的时候就出来,它会自己通过鼠标的方式,来识别出来,可以在浏览报表的时候任意切换到你所需要用到的信息,这样才能从根本上解决,才可真正的做到自助分析。
指标的计算复杂怎么办?比如,客单价,周转率,动销率,虽然公式计算简单但是从中计算的小票数是挺困难的,在实际运用中也是挺困难的,这就要从多个角度进行分析,可以统计商品类的客单价来进行匹配SKU的布局。我们是推荐用最明细的数据分析来进行分析整合的,这样才可以满足所有可能的需求。
那么要如何发挥大数据的价值?这就需要我们洞悉销售规律,做好销售预测。
利用线性回归的方法来进行预测,预测带来的良好愿意是希望能够达到的目标,但事实上没有预测是没有那么准确的,预测的也是建立在过去数据分析的基础上,进行对未来的一个估算。这就是以前是怎样,未来也会是怎样的,其实在中间会隐藏了一个假设,那么这个假设会成立么?想当然是不成立的,因为过去不代表就是未来。
以下的这张图是2014年周销量与2015年预测周销量,由此可以发现某一个品类或某个规律在前两年基本上的曲线是比较稳定的,你会发现用这种预测还是比较准的,但是我们不能轻信这样的预测。
把品类的销额、毛利、库存、周转率等不同的指标关联在一起,交叉比例是个很好指标等于毛利率乘以周转率,也就是说如果毛利率高,周转就快,那么毛利率也就快,盈利也就多。
通过以上的这样业绩图,可以清楚的看到与业绩相关的各项关键指标之间的关联的变动情况,并可任意切换时间与门店来查看,帮助决策者将业绩关键指标一目了然,快速定位问题所在,可以通过这几个关键的指标来看这家门店的经营的水平。其实就是从数字来看这两方面的水平,如果数字很差,由此可看出,经营管理的水平也是很差的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01