
大数据≠科学实验_唯数据论者当冷静_数据分析师
双十一的购物狂潮已过,但有关双十一的话题依旧层出不穷。从“大数据成就双十一”到“哪个星座是购物狂人”,上至专业数据分析人员,下至业余星座研究爱好者,都从中找到了乐趣。这两天有关“购买大号内衣的女性往往更败家”的话题又登上了热榜。
大数据分析师在对阿里巴巴内衣销售数据进行分析后发现,购买大号内衣的女性往往更“败家”。其根据是,65%B罩杯的女性属于低消费顾客,而C罩杯及以上的顾客大多属于中等消费或高消费买家。这一结论是否成立姑且不论,但首先传递了一个信息,今天人们已经进入数据为王的时代,其中大数据似乎又是王中之王。
大数据时代无论是商业网站还是搜索网站,人们的所搜所看所买都成为大数据的组成部分,无论之于商业,还是之于公共卫生,抑或国家安全,它们都是有用的信息。有心人已经意识到,因为拥有大量未经充分研究的中产阶层,中国成为世界上最重要的数据市场之一。研究这些数据,对社会各方面都是多赢。当然,保护人们个人隐私的代价需要考虑。
2008年谷歌推出“谷歌流感趋势”(GFT)数据分析工具,谷歌的工程师根据这个工具的数据分析,预测了2009年H1N1流感将要暴发,甚至具体到特定的地区和州。这一结论在流感暴发前发表在英国的《自然》杂志上。后来,情况果真如此,这与美国疾病控制和预防中心(CDC)的预测完全一致,但时间上比CDC早了近两周。从2010年起,阿里巴巴利用其数据建立的信用记录,向小微企业提供融资,也取得了不错的效果。
这些结果表明,数据为王时代早就到来。其实,这并不奇怪。人类文明的三大支柱是材料(物质)、能量和信息,数据又是信息中的核心部分。古希腊的毕达哥拉斯早就说过,“一切皆数”,尽管其所说的“数”与今天的数据有所不同,但在某些方面是相似的。
不过,数据为王并不意味着大数据为王,或数据越多越好,还要看如何分析和利用数据,进而得出最契合实际的结论,并且有效利用这一结论。因此,如果要承认阿里巴巴基于内衣销售的数据分析得出的女性胸越大越“败家”的结论,就需要有符合客观实际的解释,不幸的是,这一结论还处于见仁见智的阶段。网友的各种分析就提供了佐证:一是“大胸都被有钱人娶了,所以才有能力败”;二是“说明青春期的营养状况确实会影响胸的大小”,“胸大的确实普遍嫁得好”;三是“胸大并不败家,集中在网上打折的时候买东西,只会旺家。”
这笔混乱账目前肯定掰扯不清,但已有事实证明,数据越大并不意味着越好。就算是谷歌,一旦他们的大数据处理和分析不当,也会得出错误的结论。2013年1月,美国又发生流感,但GFT的预测比实际数据高两倍。这并非偶然出现错误,而是在过去一再发生。2011年8月~2013年9月,GFT高估流感流行长达108周。
谷歌的大数据为何预测不准呢?发表在2014年3月14日《科学》杂志上的一篇文章指出了两个主要原因。一是大数据浮夸,二是算法变化。大数据浮夸指的是,以为大数据可以完全取代传统的数据收集方法,而非作为后者的补充。大数据浮夸的最大问题在于,绝大多数大数据与经过严谨科学试验得到的数据之间存在很大的差异。
另外,谷歌对算法会进行不断的调整和改进,搜索引擎算法的改变和用户的搜索行为会影响到预测结果,比如媒体对于流感流行的报道会增加与流感相关的词语的搜索次数,进而影响GFT的预测;相关搜索算法也会对GFT造成影响。例如,搜索“发烧”,相关搜索中会给出关键词“流感”,而搜索“咳嗽”则会给出“普通感冒”。
大数据在某种程度上确实能透析出一些问题,但它并不是万能的,在大数据应用方面保持冷静,才能让大数据真正实现其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24