
CRM系统是如何完成商业数据分析的
在风口上,猪都会飞”的互联网时代,企业还没借助OA、ERP、CRM 系统等等这样的工具帮助企业提高效果,那真有点OUT,大数据的时代,再不会运用CRM系统商业数据分析功能做大数据分析,那也快OUT了。
其实我们平时所说的商业分析,数据分析的商业感觉到底是神马,它并不是什么很高深的理论或者别人捉摸不透的玩意。不是具体的结果,而是我们的分析的思维方式。
我们应该都听过「数据分析师不是数羊」的故事,如果你通过各种工具和技术计算了羊群里有1000只羊,然后告诉放羊的牧民时,这只是告诉了一个他知道的数字。
如果你告诉他,我们现在羊群有1000只羊,900只是母羊,100只是公羊。然后根据羊的特征不同,有300只是“非常能吃的”、100只是“非常能长的”、400只是“正常生羊崽的”。那么牧民会高兴,高兴的是你告诉了他一些一眼看不出来的信息,而又会有些遗憾,遗憾的是“然并卵!”
如果你告诉他,我们现在有1000只羊,900只母羊、100只公羊,严重的羊群性别比例失调,当务之急是引进更多的公羊。根据市场预估的情况,5月份买羊比4月份买羊便宜,所以4月份可以多卖掉母羊,5月份引进公羊。牧民听到这个建议,大喜!(这就是大数据分析的核心价值和意所在)
我们做数据分析,一定要从一个只是统计数据,到分析数据,再到解决实际问题,最终创造价值!
统计数据=>>分析数据=>>解决问题=>>创造价值
商业数据分析,从概念来说要一分为二:1.商业。2.数据分析
你要问我商业是什么?不好意思,我真没办法具体回答!
有人说是赚钱,有人说是业务,有人说是企业之间的合作,有人说是人心,也有人说是为社会创造价值!
更愿意定义成,我们平时所做得业务分析是什么。是明白实际的业务是怎么回事,从而解决业务中得痛点问题,这个痛点问题不是你自己发现的,而是业务告诉你的。而这个解决痛点问题的方法,不是别人告诉你的,而是你发现的。
我们还是来看CRM系统是如何完成数据分析的。
一、数据统计
CRM系统是如何完成数据统计的呢?这很简单,当我们在使用CRM系统的时候,这个无形就是在积累数据,CRM系统就在统计的数据。比如:客户管理:360度无死角录入客户信息;订单管理:记录公司所有的订单信息;项目管理:公司所有项目流程信息;产品管理:完整的产品信息及销售情况;业绩管理:财务人员录入的所有销售业绩;这些数据不断的积累,CRM系统已在无形中完成了数据积累统计的过程。
二、数据分析
当企业在运营过程中,总会或多或少碰到些问题,那么如何找到问题的根源呢?找到问题根源,才是根本解决问题的办法。那么数据分析就发挥着重要的作用了。比如某个月业绩下滑严重(可以从数据分析的业绩曲线明显看出),接下来怎么办?当然不能胡乱猜测,这时就要做数据分析了,用数据说话。首先分析每个销售员的业绩情况,同比上月,是否有巨大下滑?有,个例,那么是销售员本身的问题比较大;如果普通存在,可能市场原因,或者产品本身存在问题;那么接下来还可以从单个产品的销售曲线同比上个月的曲线进行分析,这也可以很直观的看出,是否是产品出现问题;这些都没有问题,还可以再从推广数据进行分析,总之可以从数据分析中,找到问题的根本原因。
三、解决问题
在数据分析步骤中已找到了问题的根本原因,那么接下来就好办了,根据存在的问题,去解决它。销售员自身的问题,那么就从销售人员开始,分析他业绩下滑的原因,并解决;如果是产品问题,那就分析产品,分析阻碍用户购买的原因,如产品缺陷?那就改进产品;如果是推广的问题,如投入少了?渠道出问题了?那就加大投入,拓展渠道、优化渠道合作等等。
四、创造价值
这个也就顺理成章了,完成了以上几大步骤,那创造价值也就顺理成章了。而且这么多的数据,我们在分析用户的结果中,一定可以看到用户的喜爱习惯等,这样我们就可以更深入的了解用户,为用户提供更好更适合的产品及服务,还可以从用户的喜好中创新新的产品或服务,为企业提高竞争力,为企业、为用户创造价值。
不以解决问题为目的的分析都是耍流氓,在我们做商业数据分析时,我们重复一遍,这个步骤:数据统计==>>数据分析==>>解决问题==>>创造价值。对商业数据分析这个问题,你有更好的意见或建议,欢迎补充。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16