
如何使用数据分析提升人力资源规划
将“人的数据”转变为行动计划用于人才管理,这对于人力资源管理者来说是一个战略性的机遇。
企业管理者期望人力资源管理者能够就人才需求问题成为“企业的占卜师”,“但是我们的预测必须基于数据分析,而非预感或直觉,”OptTek Systems公司的数据分析副总裁、SHRM-SCP、Kelly Rene Wenzel说。OptTek Systems致力于商务软件开发及相关服务。
Kelly Rene Wenzel在今年6月18日举办的《SHRM 2016年全球人力资源管理大会暨博览会》的会前研讨会上说:“我们是人力资源信息的管理者,但是我们并没有充分利用这些信息。”
人力资源分析能够降低相关的支出和风险。OptTek公司业务发展副总裁Marco Better先生认为:“通过基于电脑的模拟建模,人们可以探求各种人才招聘和人员配置的替代方案。如此能够确保自己能够选择合适的人才、采用合理的人员数量,以高准确性的预测方案实现企业的目标。”“数据分析能够消除由于凭空猜测而造成的人浮于事、人员不足以及其他高成本的人力资源问题,从而降低相关的支出”。
他认为:“‘大数据’作为一个其定义正在扩展的名词,描述对象是大容量的数据,这些数据具有可以为人们提供行动所需信息的潜力,能够帮助人力资源管理者回答高层管理者提出的‘将会发生什么?何时会发生?’等问题”。
避免人才缺口1
决定“我们已有的人才与我们需要的人才——或者即将需要的人才”是人力资源管理的一项关键挑战。但是人力资源管理者的反应通常是被动型的,比如在有人离职之后才去了解人才缺口,一些跨国公司甚至无法清楚地说出他们的员工总数到底有多少。
当企业的员工人数超过了真实需求量时将会导致产生不必要的开支,让企业高管生气。相反,当企业的人才供给紧张,员工们也不会高兴甚至想要离开,这将造成额外的员工招聘和更替的开支——这还不包括那些不敬业却没有离开公司的员工所造成的花费。
将数据分析运用于应对人才供给带来的挑战,需要研究人才流失的历史——即员工离职的原因。同时也需要判断“保留这些员工?还是遣散这些员工,然后从外部招聘新的员工?”这两个选项中哪一项的花费更大。判断的结果因工作岗位的特殊性以及填补这一岗位的难易程度而异。
Wenzel建议:“如果人才流失严重,而又招聘不到合适员工,则应关注于提升留任率、增加培训和晋升、丰富福利待遇的价值、完善企业文化。”
提供企业内部儿童日托服务等做法可以说是丰富员工福利待遇的一种措施。但是与凭空猜测相比,更应该基于预测性的数据分析来决定增加何种福利政策:“这样做是否真正符合员工的需求?有数据分析能支持这一结论吗?”
如此,给我们带来了“最优化”的问题——如何以最佳投资水平获取最佳收益。Wenzel的经验是,在福利项目上投入太多的钱并非能够获得通过提高员工任率带来的等值收益。
通过历史数据分析,可以利用数据进行建模,进行预测。为了判断拥有高价值的员工是更倾向于留任还是离职,及其原因,需要针对拥有相似特质的员工建立他们的留任模型。
比如,可以将虚拟员工加入模型之中,模拟这些员工的职业生涯路径。
使用人力资源指标进行建模2
Wenzel和Better指出了多种可以用来模拟建模以及进行预测性分析的指标:
历史描述性指标:
历史员工离职率
历史调岗和晋升记录
历史培训项目
历史绩效指
历史成本和预算
前瞻性的未来指标:
可能的计划和行动给人才供给产生的影响
对于人力资源的质量和敬业度的影响
Better建议:“在更精细化的水平上对人力资源进行建模,细化到工作角色水平。”“使用模型预测未来的员工行为,检测相关变革对于人力资源的影响。各种人才缺口不尽相同,因此需要对每一个特定的岗位设立不同的计划。”
建立的模型必须能够描述员工的行为,因此需要包含的相关数据有:
离职率(主动离职、辞退、退休)
流动率(晋升、调岗)
新员工及聘用
成为熟练员工所需要的时间
模型也可以纳入一些能够获得的新因素,比如社交网络数据、失业率水平等外部数据。
当对人才供给或需求的空缺风险进行建模分析时,包括的指标有:
按岗位和职责描述划分的空缺风险
按岗位和时间段划分的人才流动
员工数量增长率
当进行员工流失风险分析时,应关注的指标有:
自愿离职率、辞退率、退休率
按岗位和人口统计学变量的员工流失风险,包括新员工、高绩效员工以及多元背景员工。
进行人才获取分析时需要考虑的指标有:
聘用率(内部招聘和外部招聘)
人才来源渠道分析
聘用成本
全职员工和临时员工
招聘质量
能够讲述故事3
当向企业管理层汇报你的分析成果时,学会用数据讲故事。不要向他们展示电子表格,他们厌烦这东西,而且他们还习惯用自己的思路去解读里面的数字。应该想办法如何吸引这些你想要说服的人们。当与管理层会谈时,以一项需要解决的业务问题为切入点,比如人才缺口的填补,接着向他们展示你的数据发现如何带来节约开支、增加收益的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30