京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网金融做好大数据风控的关键是什么
大数据对于金融行业最大的价值体现在风控上。前几年,我们经常见到这种景象:一些刚开张没多久的互联网金融企业,对外宣传中总要加上一句自己是运用大数据技术进行风控的,仿佛不和“大数据”沾上点关系,都不好意思说自己是做互联网金融的了。
而现实总是骨感。
以P2P网贷行业为例,据零壹财经《中国P2P网贷行业2016年5月月报》显示,截至2016年5月31日,P2P行业的问题平台总计2471家,占平台总数的比例高达54.1%,这其中除了主动退出和自融欺诈的平台外,有不少平台倒闭是因为风控不过关。
在国内, 金融机构对大数据的应用还基本处于起步阶段,一是因为我国的征信体系不完善;二是国内的用户数据普遍存在获取困难和不精准问题,而传统金融机构缺乏对自身数据的分析处理能力。目前互联网金融在大数据风控上的尝试主要有两种方式,一是阿里、京东及其他大型线上平台通过自身积累的数据挖掘,自建信用评级发放金融产品;二是众多中小互联网金融公司通过贡献数据给第三方征信机构(如上海资信有限公司),再分享征信数据,这也是目前众多P2P平台采用大数据风控的主要方式。
而大部分互金平台自身所积累的数据,由于体量有限,最多只能称为随机性样本,不具代表性。此外,大部分平台由于缺乏对数据的挖掘建模和分析评估能力,无法得出科学有效的风险计量模型,形成风控手段。
大数据风控在互金行业的机遇与挑战
与国外金融行业相比,中国最大的弱势在于征信体系的不完善。目前央行征信系统覆盖了8亿人,但只有3亿左右的人是有信贷记录的,剩下的都是信用空白人群。但也正是因为这些数量庞大的白户,中国基于大数据风控的土壤相比国外更成熟,更具发展空间。
截至2015年年底,中国网民规模达到6.88亿,互联网的高效性和爆发性使我们能以较低的成本、较短的时间积累大量的用户数据,为分析建模提供足够的样本量。
在这过程中, 互联网金融企业面临的挑战主要有两个,一是数据的不断积累与沉淀;二是高端数据人才的挖掘与培养。
为何要不断积累与沉淀数据?有的企业掌握了一定量的客户信息数据,就以为掌握了大数据,其实大数据风控的核心不在于数据本身,而在于通过足量的数据分析得到的风控模型。只有不断纳入足够的变量,得出的模型才具备充分代表性,不容易出现问题。因此, 互金平台在目前的阶段中,要尽量抓取不同层面的数据,在这个基础上进行综合判断,减少出现误差的可能。
除了足量的数据积累外,把这些数据整合起来,形成核心有效价值最不可或缺的是人才,目前在国内金融行业中, 擅长风控数据建模和数据研发的人才少之又少,挖掘和培养具备业务视角和技术能力的复合型人才成为互联网金融企业的崛起之光。相信随着行业的成熟,会有越来越多的高端数据人才加入这个行业,共同实现互联网金融的大数据掘金梦想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26