京公网安备 11010802034615号
经营许可证编号:京B2-20210330
● 有的函数只不过学会了简单的用法
原因:
○ 函数的表象(简单、最表面的用法)而大部分人学习只停留在第一个层次上面,学完函数的表象就停止学习—>产生已经学完函数所有东西的错觉—>没有吃透函数的外延(无法知道函数很多使用技巧)。而我们学不会Excel是方法出现了问题,而不是我们不聪明我们看了大部分的教学案例及教程,但一个又一个的教学案例,按部就班的做,学完就学完了(只说了案例,其他的都没说)

而一个好的Excel教程是这样的:
1、列需求2、举例子3、解决办法4、引出函数的功能(并介绍内涵)5、为什么用这个函数能这样解决问题6、解决问题后介绍更多函数的用法,拓展外延
大部分教程只有前三部份,所以从来没想后几步导致学不好Excel。通过下面三步学习法,正确学习Excel方法吃透内涵拓展外延
■ 我们要学会查看函数完整说明
■ 搜集学习Excel函数大量正向案例和反向案例
■ 结合练习和变化式练习
而大部分人学习函数是这样的
查看一下简答的函数用法,然后百度搜索一下这个函数怎么样,看1~2个案例,自己尝试一下解决问题,然后就没有然后,以为自己就会了。回想一下你是不是这样学习的

案例只会告诉你一种或几种用法,而不是函数的全部信息。解决办法,找到微软官方的函数说明,方法1:Excel软件自带的帮助文档是最全面的,按F1就可以调出来。方法2:用微软自己的bing搜索去查找,网址:www.bing.com
点开函数说明,里面不仅有SUM函数的视频教程,如果网速慢的话还有一步步详细的步骤

一般人如何理解SUM函数呢,SUM函数模型=sum(num1,[num2],……)几个数求和嘛,我们只是停留在这个表面。下面我们来看看官方怎么说,总结如下:
对参数的说明。参数可以是数字,单元格引用,也可以是单元格范围。参数可以是1个,也可以是多个,最多255个
和sum函数关联的用法状态栏求和、自动求和、非连续区域求和。
常见错误比如求和数据类型不一致,删除某一列之类的所以用sum函数,删除行列,插入行列,会带来什么样的影响,都有非常详细的说明
优化的做法一些习惯用法,存在更好的、优化的做法。
其他信息
这是浓缩版,非常全面,如果我们认真看完官方说明文档的话,我们可以掌握很多新知识新技能了
但是只看说明文档还是不够全面的,比如对SUM函数我们还可以深入的问几个问题
①、sum函数里面的参数能不能给它加符号呢如=sum (A,-B)
②、sum函数能否和逻辑运算结合在一起呢?如:统计一个表格里面的男性总数
③、sum函数,加入求和A、B、C、D单元格,其中A是1,B是2,C是false,D是“张三”,会得到什么结果,或是报错?
大家可以动手试一下吧,检验自己创造力的时候到了
3步法(学习重点)
步骤一:探求Excel内含部分
深入问自己如下问题
了解每一个参数的要求(要求的数据类型,边界,特殊情况等)
探索参数超出边界,处理参数类型后的情况(比如参数加负号,参数里嵌套函数,参数缺失……..)
探索函数对参数处理的机制,主要是绝对引用,还是相对引用。当参数里的内容出现缺失,被删除,被插入新行、列等意外情况后,会发生什么情况。
去探索函数基本用法之外,更加巧妙、灵活、超出官方文档的技巧。
等等
不断去探索,去尝试
步骤二:案例学习法
正向案例与反向案例的学习
○ 正向案例:就是别人使用这个函数的方法、技巧、教程、经验
○ 反向案例:就是别人用这个函数遇到的问题,犯的错误,总结的经验,吸取的教训,积累的注意事项等
这个方法与传统学习的不同
1、大部分人学习1~2个案例就结束了,而这里要学习大量的案例,要学就深入学习,结合大量的案例才能弄透
2、大部分人只学习正面的案例,不学习反面的案例
而正向案例反向案例学习有如下阶段:
● 阶段1:搜索阶段(通过搜索引擎、知乎、Excel垂直网站等来搜索正反向案例)
● 阶段2:记录和整理阶段(把案例分门别类,记录到一个笔记里面,一般一个函数一个笔记)
● 阶段3:按照案例,打开Excel,一个一个跟着走。
● 阶段4:写学习总结报告,把案例中的好技巧、注意点浓缩出来,形成自己的经验。
在你的笔记软件(为知笔记。OneNote、有道云笔记等)中新建一个笔记本,名字叫Excel函数相关教程。
步骤三、结合练习和变化式练习
但是完整的Excel函数学习笔记应该包含以下四部分:
官方文档总结
■ 内含思考总结
■ 正反案例学习总结
■ 索引相关教程文章
这样为你以后节约不少搜索及选择的时间,只需要看自己保存的笔记
上面学习步骤亦可以划分三个阶段
★ 阶段一:已解决问题为主
★ 阶段二:以吃透内含为主
★ 阶段三:以拓展外延为主
结束语:在有限时间内尽快解决问题,有针对性的去解决当下问题。而在有空的时候我们可以查一查遇见问题的相关官方文档,并且查阅一些牛人写的博客进行拓展。相信大家进行这样的系统学习,Excel还不是小菜一碟吗!如果我们将这三步法运用到我们的其他学习生活中,效率是不是更高效呢
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31