
● 有的函数只不过学会了简单的用法
原因:
○ 函数的表象(简单、最表面的用法)而大部分人学习只停留在第一个层次上面,学完函数的表象就停止学习—>产生已经学完函数所有东西的错觉—>没有吃透函数的外延(无法知道函数很多使用技巧)。而我们学不会Excel是方法出现了问题,而不是我们不聪明我们看了大部分的教学案例及教程,但一个又一个的教学案例,按部就班的做,学完就学完了(只说了案例,其他的都没说)
而一个好的Excel教程是这样的:
1、列需求2、举例子3、解决办法4、引出函数的功能(并介绍内涵)5、为什么用这个函数能这样解决问题6、解决问题后介绍更多函数的用法,拓展外延
大部分教程只有前三部份,所以从来没想后几步导致学不好Excel。通过下面三步学习法,正确学习Excel方法吃透内涵拓展外延
■ 我们要学会查看函数完整说明
■ 搜集学习Excel函数大量正向案例和反向案例
■ 结合练习和变化式练习
而大部分人学习函数是这样的
查看一下简答的函数用法,然后百度搜索一下这个函数怎么样,看1~2个案例,自己尝试一下解决问题,然后就没有然后,以为自己就会了。回想一下你是不是这样学习的
案例只会告诉你一种或几种用法,而不是函数的全部信息。解决办法,找到微软官方的函数说明,方法1:Excel软件自带的帮助文档是最全面的,按F1就可以调出来。方法2:用微软自己的bing搜索去查找,网址:www.bing.com
点开函数说明,里面不仅有SUM函数的视频教程,如果网速慢的话还有一步步详细的步骤
一般人如何理解SUM函数呢,SUM函数模型=sum(num1,[num2],……)几个数求和嘛,我们只是停留在这个表面。下面我们来看看官方怎么说,总结如下:
对参数的说明。参数可以是数字,单元格引用,也可以是单元格范围。参数可以是1个,也可以是多个,最多255个
和sum函数关联的用法状态栏求和、自动求和、非连续区域求和。
常见错误比如求和数据类型不一致,删除某一列之类的所以用sum函数,删除行列,插入行列,会带来什么样的影响,都有非常详细的说明
优化的做法一些习惯用法,存在更好的、优化的做法。
其他信息
这是浓缩版,非常全面,如果我们认真看完官方说明文档的话,我们可以掌握很多新知识新技能了
但是只看说明文档还是不够全面的,比如对SUM函数我们还可以深入的问几个问题
①、sum函数里面的参数能不能给它加符号呢如=sum (A,-B)
②、sum函数能否和逻辑运算结合在一起呢?如:统计一个表格里面的男性总数
③、sum函数,加入求和A、B、C、D单元格,其中A是1,B是2,C是false,D是“张三”,会得到什么结果,或是报错?
大家可以动手试一下吧,检验自己创造力的时候到了
3步法(学习重点)
步骤一:探求Excel内含部分
深入问自己如下问题
了解每一个参数的要求(要求的数据类型,边界,特殊情况等)
探索参数超出边界,处理参数类型后的情况(比如参数加负号,参数里嵌套函数,参数缺失……..)
探索函数对参数处理的机制,主要是绝对引用,还是相对引用。当参数里的内容出现缺失,被删除,被插入新行、列等意外情况后,会发生什么情况。
去探索函数基本用法之外,更加巧妙、灵活、超出官方文档的技巧。
等等
不断去探索,去尝试
步骤二:案例学习法
正向案例与反向案例的学习
○ 正向案例:就是别人使用这个函数的方法、技巧、教程、经验
○ 反向案例:就是别人用这个函数遇到的问题,犯的错误,总结的经验,吸取的教训,积累的注意事项等
这个方法与传统学习的不同
1、大部分人学习1~2个案例就结束了,而这里要学习大量的案例,要学就深入学习,结合大量的案例才能弄透
2、大部分人只学习正面的案例,不学习反面的案例
而正向案例反向案例学习有如下阶段:
● 阶段1:搜索阶段(通过搜索引擎、知乎、Excel垂直网站等来搜索正反向案例)
● 阶段2:记录和整理阶段(把案例分门别类,记录到一个笔记里面,一般一个函数一个笔记)
● 阶段3:按照案例,打开Excel,一个一个跟着走。
● 阶段4:写学习总结报告,把案例中的好技巧、注意点浓缩出来,形成自己的经验。
在你的笔记软件(为知笔记。OneNote、有道云笔记等)中新建一个笔记本,名字叫Excel函数相关教程。
步骤三、结合练习和变化式练习
但是完整的Excel函数学习笔记应该包含以下四部分:
官方文档总结
■ 内含思考总结
■ 正反案例学习总结
■ 索引相关教程文章
这样为你以后节约不少搜索及选择的时间,只需要看自己保存的笔记
上面学习步骤亦可以划分三个阶段
★ 阶段一:已解决问题为主
★ 阶段二:以吃透内含为主
★ 阶段三:以拓展外延为主
结束语:在有限时间内尽快解决问题,有针对性的去解决当下问题。而在有空的时候我们可以查一查遇见问题的相关官方文档,并且查阅一些牛人写的博客进行拓展。相信大家进行这样的系统学习,Excel还不是小菜一碟吗!如果我们将这三步法运用到我们的其他学习生活中,效率是不是更高效呢
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07