
● 有的函数只不过学会了简单的用法
原因:
○ 函数的表象(简单、最表面的用法)而大部分人学习只停留在第一个层次上面,学完函数的表象就停止学习—>产生已经学完函数所有东西的错觉—>没有吃透函数的外延(无法知道函数很多使用技巧)。而我们学不会Excel是方法出现了问题,而不是我们不聪明我们看了大部分的教学案例及教程,但一个又一个的教学案例,按部就班的做,学完就学完了(只说了案例,其他的都没说)
而一个好的Excel教程是这样的:
1、列需求2、举例子3、解决办法4、引出函数的功能(并介绍内涵)5、为什么用这个函数能这样解决问题6、解决问题后介绍更多函数的用法,拓展外延
大部分教程只有前三部份,所以从来没想后几步导致学不好Excel。通过下面三步学习法,正确学习Excel方法吃透内涵拓展外延
■ 我们要学会查看函数完整说明
■ 搜集学习Excel函数大量正向案例和反向案例
■ 结合练习和变化式练习
而大部分人学习函数是这样的
查看一下简答的函数用法,然后百度搜索一下这个函数怎么样,看1~2个案例,自己尝试一下解决问题,然后就没有然后,以为自己就会了。回想一下你是不是这样学习的
案例只会告诉你一种或几种用法,而不是函数的全部信息。解决办法,找到微软官方的函数说明,方法1:Excel软件自带的帮助文档是最全面的,按F1就可以调出来。方法2:用微软自己的bing搜索去查找,网址:www.bing.com
点开函数说明,里面不仅有SUM函数的视频教程,如果网速慢的话还有一步步详细的步骤
一般人如何理解SUM函数呢,SUM函数模型=sum(num1,[num2],……)几个数求和嘛,我们只是停留在这个表面。下面我们来看看官方怎么说,总结如下:
对参数的说明。参数可以是数字,单元格引用,也可以是单元格范围。参数可以是1个,也可以是多个,最多255个
和sum函数关联的用法状态栏求和、自动求和、非连续区域求和。
常见错误比如求和数据类型不一致,删除某一列之类的所以用sum函数,删除行列,插入行列,会带来什么样的影响,都有非常详细的说明
优化的做法一些习惯用法,存在更好的、优化的做法。
其他信息
这是浓缩版,非常全面,如果我们认真看完官方说明文档的话,我们可以掌握很多新知识新技能了
但是只看说明文档还是不够全面的,比如对SUM函数我们还可以深入的问几个问题
①、sum函数里面的参数能不能给它加符号呢如=sum (A,-B)
②、sum函数能否和逻辑运算结合在一起呢?如:统计一个表格里面的男性总数
③、sum函数,加入求和A、B、C、D单元格,其中A是1,B是2,C是false,D是“张三”,会得到什么结果,或是报错?
大家可以动手试一下吧,检验自己创造力的时候到了
3步法(学习重点)
步骤一:探求Excel内含部分
深入问自己如下问题
了解每一个参数的要求(要求的数据类型,边界,特殊情况等)
探索参数超出边界,处理参数类型后的情况(比如参数加负号,参数里嵌套函数,参数缺失……..)
探索函数对参数处理的机制,主要是绝对引用,还是相对引用。当参数里的内容出现缺失,被删除,被插入新行、列等意外情况后,会发生什么情况。
去探索函数基本用法之外,更加巧妙、灵活、超出官方文档的技巧。
等等
不断去探索,去尝试
步骤二:案例学习法
正向案例与反向案例的学习
○ 正向案例:就是别人使用这个函数的方法、技巧、教程、经验
○ 反向案例:就是别人用这个函数遇到的问题,犯的错误,总结的经验,吸取的教训,积累的注意事项等
这个方法与传统学习的不同
1、大部分人学习1~2个案例就结束了,而这里要学习大量的案例,要学就深入学习,结合大量的案例才能弄透
2、大部分人只学习正面的案例,不学习反面的案例
而正向案例反向案例学习有如下阶段:
● 阶段1:搜索阶段(通过搜索引擎、知乎、Excel垂直网站等来搜索正反向案例)
● 阶段2:记录和整理阶段(把案例分门别类,记录到一个笔记里面,一般一个函数一个笔记)
● 阶段3:按照案例,打开Excel,一个一个跟着走。
● 阶段4:写学习总结报告,把案例中的好技巧、注意点浓缩出来,形成自己的经验。
在你的笔记软件(为知笔记。OneNote、有道云笔记等)中新建一个笔记本,名字叫Excel函数相关教程。
步骤三、结合练习和变化式练习
但是完整的Excel函数学习笔记应该包含以下四部分:
官方文档总结
■ 内含思考总结
■ 正反案例学习总结
■ 索引相关教程文章
这样为你以后节约不少搜索及选择的时间,只需要看自己保存的笔记
上面学习步骤亦可以划分三个阶段
★ 阶段一:已解决问题为主
★ 阶段二:以吃透内含为主
★ 阶段三:以拓展外延为主
结束语:在有限时间内尽快解决问题,有针对性的去解决当下问题。而在有空的时候我们可以查一查遇见问题的相关官方文档,并且查阅一些牛人写的博客进行拓展。相信大家进行这样的系统学习,Excel还不是小菜一碟吗!如果我们将这三步法运用到我们的其他学习生活中,效率是不是更高效呢
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13