
破解大数据走向战场的难题
随着大数据在军事领域的逐步开发和应用,越来越多的人认为在未来战场上,只有具备大数据优势的一方,才能立于不败之地。但依靠大数据打仗,并没有看起来那么美,也并非一蹴而就,而需要破解相应的难题。
需 要破解数据搜集难题。从数据分析角度来看,海量数据对于得出正确的分析结论有着积极意义。因为只有当数据达到一定量且足够大,才能提供可信的规律分析。但 海量数据可能并非你希望的数据,并非有用数据。收集数据是为了发现其背后隐藏的信息、规律,然而现实中,有时所谓的海量数据对分析某一特定问题,恰好是没 有价值、毫无意义的冗杂信息。在军事领域,尤其容易产生这种现象。军事领域历来有“战争迷雾”之说,根本的原因在于敌对双方或多方拼命隐真示假,甚至有意 制造伪信息实施干扰。诸如此类的现象,决定了有价值情报搜集之难。而要成功运用大数据技术,最重要的前提是必须有可分析的材料,破解数据搜集难题,真正回 答谁来收集数据,怎样收集数据? 在平时训练中,如果采集到的数据不准、质量不高,就难以确保评估结果的真实性和有效性;在战时,如果不能及时获取敌方数据信息,准确辨别敌方的干扰、迷惑 或欺骗数据信息,都可能造成误判。
需要有让数据说话的程序模式。很多推崇大数据的人 认为,“有了足够的数据,数据就可以自己说话”。但数据怎样才能“说话”?从理论上讲,数据根本无法自己说话。要让庞大的数据“表达观点”,必须有过硬的 软件设计、分析程序,以助于以技术分析手段得出数据内隐含的结论。没有符合实际善于淘尽黄沙见真金的分析程序,空有大数据也不能得出正确结论。而且即使有 大数据分析程序也要对其分析结果保持一定的谨慎,因为只要是人为设计的东西,都难免有缺陷,并不能使人们摆脱曲解、隔阂和错误的成见。有专家指出,偏见和 盲区同样存在于大数据技术中,就像它们存在于个人的感觉和经验中一样。大数据重混杂性轻精确性、重相关性轻因果性,能够发现“是什么”而不探究“为什 么”。大数据验证人们对社会和战争的分析结论,有时比提供分析结论更为适合。
需要有 与数据分析配套的决策机制。信息化战争已经进入“秒杀”时代,而大数据技术能在很短时间内进行问题分析,应该说有其适应快速反应的优势。但如果没有与之相 对应的指挥决策机制,大数据的这一优势也可能遭到削弱。如果军兵种间的壁垒仍然很高,各作战系统都在生产自己的数据且不与体系共享,那么大数据就难以发挥 相应的作用。与之类似的是,如果指挥体制不能融合各种作战力量,各军兵种自行其是,那么大数据即使分析出正确的结论,也会因为要经过冗长的周转期而导致错 过最佳作战时机。因此要想真正利用大数据打仗,必须突出“网链聚能”,强化信息系统综合集成,充分利用高度融合、互联互通、资源共享的指挥信息系统,有效 发挥信息流对物质流和能量流的支配作用,实现作战力量的高度聚合、作战资源的合理分配和作战效能的精确释放;着力实现数据资源的统一化、规范化、交互化、 标准化,为信息系统综合集成提供稳定规范的数据环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09