
数据分析告诉你,转化才是王道
转化:在完成引流的工作后,下一步需要考虑的就是转化了,一个崭新的用户一路走来到完成交易,中间需要经历浏览页面(下载app)->注册成为用户->登陆->添加购物车->下单->付款->完成交易(这段过程,在不同的公司中可能不同,例如家装互联网公司完成交易的过程就会分为交定、签约、开工、竣工等)。每一环节中都会有用户流失,提高各个环节的转化率,一直是互联网公司运营的最核心的工作之一。转化率的提升,意味着更低的成本,更高的利润。
分析目标:了解各环节转化情况,分析其异常或不合理情况,进行调整,以提升各环节的转化率。
分析角度:
观察各环节转化率,分析其合理性,针对转化率异常环节进行调整
追踪转化率变化,用于异常定位和策略调整效果验证
观察各渠道转化情况,定义渠道价值,并依此适当调整运营策略
分析各环节转化周期,分析用户习惯,为制定运营策略提供依据
分析方法:关于转化率的各种名词也特别多,有静默转化率、登陆转化率、咨询转化率、付款转化率等等,然而并不需要考虑这些词,只要关注用户从接触应用到成交中的几个环节就好。我们依然使用图表的形式来从各个角度对转化数据进行展示分析。
如上图所示,传统漏斗图只能显示一条路径的转化率情况,稍加修改后,可实现对比功能,例如上图所示的新老用户的转化率的对比。可以根据实际情况中在该图中加入更多环节,例如注册、收藏、开工、竣工等。
从上图中,我们可以发现这样一个问题,下单到付款中的转化率过低,正常来说,用户只要下单,付款的比例是比较大的。对于这个异常,我们来做下猜测:对于我来说,下单之后没有付款的原因有以下几个:
又看了下其他家的商品或服务,发现了更好的,就取消了付款;
付款前习惯性的问下相关的人进行确认,然后发现计划有变,所以取消付款;
到了付款的时候发现居然不支持支付宝,无奈取消付款;
下单后被告知没货;
页面好卡,怒而弃之;
余额不足。。。
总体上可以分为两类:用户本身原因,系统设计原因。上图中这么出现付款率这么低的情况,基本上可以确定是系统原因。然而具体是哪块的设计出了问题,可以进一步细化追踪。
如上图所示,点击相应阶段,联动出下面各渠道与各业务的转化率明细,可以看出,各渠道的转化率差别较大,其中pc端转化率明显偏低,而各业务之间的转化率差别不大,基本可以确定,是pc端存在问题,导致转化率偏低。
上图中将转化率与各阶段端访问数量放在一个页面中,便于对整体情况的把控,为调整运营策略提供参考作用。
上图中的付款转化率低的太明显,只要不瞎都能看出这转化率出了问题,但是往往转化率的问题并没有这样的明显,那怎样定位自己的转化率是否合理,哪个阶段的转化率有提升空间呢?继续看下面这张图:
上图是通过多角度对比来分析业务转化率的健康状况,包括与自己同期对比、行业中与自己相似产品对比、行业中优秀的产品对比。对比各环节转化率的不同,产生数据上的冲击,所有落后的节点,都是可以提升的空间。或许对于很多业务来说,行业数据与对手数据并不是很好获取到,那么就减少对比的维度,或者选择可替代的数据来对比,例如相近行业数据、目标值等等,尽量知彼,一定知己。另外加一句,很多公司都有手段获取到你认为它应该没有的数据,大家各显神通,办法还是有的。
除流量外,转化率也是需要追踪的,将时间的维度拉开,分析各阶段转化率随着时间的波动,也是很有看点的。
如上图所示,在4月17日到21日中间,转化率出现下滑趋势,通过渠道转化率与业务转化率两个图表的联动,可以追踪定位导致转化率下滑的渠道或业务。常见的原因,公司运营部门投入了某个渠道进行推广,新的渠道带来了新的流量,而该渠道所引入的用户质量却偏低,拉低了整体的转化率。
还能看到的是,在4月22号之后,转化率开始抬头,并且维持了较高转化率,不管这次转化率的提升是活动营销导致的,还是产品改进导致的,或者是运营调整导致的,这都是一个响当当的业绩,也可以梳理这次工作的要点,作为成功经验来为公司下一波发力做准备。
现在互联网的推广渠道特别多,前面几个图表中,我将渠道定义为pc端、app、微信之类其实并不严谨,对于这些大类渠道的分析,需要从产品层面去考虑,每一点的优化与分析,最终都落实到产品优化上,才体现价值。而深入这些大类渠道进行细分,例如营销短息、百度竞价、广告站点等,就会有运营层面来考虑的问题,在上一篇(转化率)中也提到,渠道的价值,单独看流量或转化率都是不够的,需要综合来考虑。如下图所示:
气泡图在传统图表中信息量涵盖相对是比较大的,上面这张图x轴和y轴分别表示流量和转化率,y轴可以根据分析内容不同切换成点击率、注册率、架构率、下单率等等,气泡大小表示的为渠道ROI。从上图中可以看出,在右上象限中的渠道价值是比较大的,再综合考虑ROI,还可以看出渠道性价比情况。
气泡图信息量较大,可将上图一拆二如下图:
这种四象限分析对比分析方法用于某个时间段内或者针对某个营销事件的分析,只能看到点,若要进行更深层次的分析,还要结合渠道的发展趋势一起看。可以采用下图方式(散点图与趋势图形成联动,渠道综合价值与趋势相结合。
这种场景通用性并不是很强,会和公司业务相关联,有些业务的交易是分成多个阶段来完成,这种情况可以对转化周期进行分析。
上图中可以看出,该业务的付款与成交一般在前四周完成,而第五周开始趋于稳定。知道以上信息后,可针对第五周未付款或完成交易的用户进行询问,提高转化率。另外可制定四周内完成交易有奖励等活动来缩短成交周期,因为图中可以看出,绝大部分用户四周时间足够完成服务检查、订单确认等工作。
转化率是所有订单导向的互联网公司非常关注的指标,以上的介绍只是浅层的、简单的分析,更多的偏向于结果展示。对转化率的影响因素非常多,深入分析抓住问题的根本,还需要一些挖掘方法相配合,很多公司也有专人或团队来负责分析工作。在公司完成用户的拉新和转化之后,也该关心用户的存留问题了,大部分互联网公司,是有相当一部分的订单是由老客户产生的。关于存留数据分析,后面会进行介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18