
经验 :如何避免自嗨型的数据分析?你必知的三大法则
身为数据分析师的你,有没有经历过这样的苦恼?写了那么多页PPT没人耐心看?提了那么多的数据后却没有然后?业务部门觉得你拿着高薪没干啥活。是的,数据分析师们拉了很多数据、画了很多图、建了很多模型,但是,并没有传说中的数据驱动业务,或许连装饰业务都谈不上?
这是不是有点令人绝望?
本文主要从源头角度帮助数据工作者合理判断识别需求,并通过需求+沟通+落地三大法则,帮助数据人员发挥数据在企业中的价值,少走弯路。
为什么自嗨?
还记得你的分析报告怎么出来的吗?领导的灵感一现?套用各种挖掘算法的结果?业务部门随口一提的延伸?等等。
不管是哪种,不管是谁提的,让我们一起来想想,你分析的需求站的住脚吗?是伪需求还是真实需求?为什么会有此需求?最关键的是这个需求是数据能够解决的吗?
1、需求的主要来源
老大的敏锐眼光:这还用说么
其他部门提出:业务、产品、运营、市场等
业界在做的:BAT的做法,可归纳到前2项
自驱动:不干活,那怎么行
2、需求三大基本要素
数据需求的分析和判断是一个综合判断过程,简单来说应当具备三大基本元素:
第一元素:现有的需求,是能够用数据去解决的,这样数据才有用武之力!
第二元素:现有的需求,必须要有支持分析、解决的基础数据来源,不管是内部的还是外部的,否则就相当于无源之水,无本之木,只能作罢。所以企业“养数据”很关键。
第三元素:现有的需求,用数据的手段解决后可以提取有效的、可执行的落地方案,否则只能是绣花枕头,看看而已。
当然除了这些还有其他的,比如这个需求是否紧急、投入产比如何、当下是否有足够的资源支撑等等。
如何避免自嗨?
独乐乐不如众乐乐,大家利益绑定、战线统一岂不是更好?(其实操作起来也是有一定难度,但是态度要摆正)
三大法则:需求+沟通+落地
1、需求分析:洞察本质
可以使用场景还原法则:数据需求什么?具体问题是什么样的?需要解决这个问题的是谁?什么情况下会需要?业务逻辑是什么?目的是什么?——需要注意的是,这里要深入分析需求提出者深层次的目的,洞察根本需求才能找出更合理的对策。
举个栗子:有个用户说想吃火锅,可是,他真的是嘴馋想吃火锅吗?周围可能没有火锅店。其实他可能是饿了,如果当时你能快速给他个包子,不仅能满足其根本需求,还更节省成本。
需求判断的过程,每个人都有一套自己的方法,适合自己、适合当下即可,多问几个为什么会有帮助
2、沟通为先:抱团取暖
数据分析的结果或者说数据的结果最终是要应用到业务中去,那么寻求业务部门的支持就尤为重要,如果需求直接来自于业务部门就更好了。这样有2个好处:一是能更好的知道数据的应用场景,提供更佳的解决方案;二是能真正落地使用,避免纸上谈兵。
不管是耍酷、卖萌还是秀肌肉,搞好关系很重要,想想产品汪们吧,分析狮也是一样
3、落地应用:是骡子是马拉出来溜溜
分析要有落地方案:数据很多,结果也很多,不同的人有不同的领悟和业务解读,但是,数据的重要性不在于量有多大、算法有多重要,而在于接地气,能创造价值。
你说数据很有指导价值,**指标上升了**%,SO WHAT?!
你说你的分析结果很棒,那告诉我,接下来,该怎么做?!
分析要有检验和迭代:数据分析的结果存在一定的概率性、偶然性,而现实业务比较复杂,两者发生的情况未必一致,所以分析结果要有检验标准,做的好与不好要有量化、可衡量的指标。同时,在实际应用过程中,要跟踪、改进、迭代。这个过程同产品迭代过程。后面有时间会重点说。
避免使用过于专业的术语,使用业务人员或外行人员能理解的沟通方式和语言会提高效率
其实企业中的真实数据分析远比想象中复杂,在一定情况也并非需要多么高大上、多么复杂的模型。因此,对于数据分析工作者来说,如何根据现实情况,判断、引领需求,快速创造价值就显得尤为重要。这在一定程度上对数据工作者的综合能力较高,一句话概括为:用产品的思维做数据,用解决方案的思维做数据。我们不相信高精尖、我们相信最终结果。
希望本文对正在为数据价值困惑的朋友有所启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07