
企业如何成功地利用大数据
大数据术语专指21世纪企业所面对的各种数据渠道和信息来源。随着数字领域的开始,这些不同的渠道也越来越多,同时产生越来越多的数据,这些数据量已超过以往任何时候。从更广义上来讲,大数据仅仅是指企业营销(即市场调研和分析)的一个组成部分。
大数据能够帮助企业确定客户的需求、偏好和愿望,并能够帮助他们了解如何满足这些不同的需求、特点怪癖和特性。如果企业能够成功地分析这些数据,那么他们将从这些数据分析中获得比竞争对手更多竞争优势。如果企业不能很好的分析和利用这些数据,那么再多的数据也没有用,企业也无法利用这些数据做出正确的决策。
然而,问题是,如何能最大限度地、更好地利用大数据?关于这个问题答案是多种多样的,但在一般情况下,如果企业能够遵循下面这些基本原则,将能得到更好地发展。
基于事实做决策,而不是凭直觉
数据分析为企业带来的最大好处是,可以基于确切数据来作出决策,而不是凭直觉。在企业意识到这一点后,企业会采取具体的步骤来满足企业需求,即客户需求、内部需求、物流需求等。
数据分析可以帮助指导企业的业务决策,通过分析数据,帮助企业决定是否继续提供某种产品或服务,不仅是基于销售数字,还要基于客户的反馈和需求。销售数字相对较低,而在社交媒体平台的需求又很高?或许这意味着该产品销售不佳或者高于市场可接受的成本。大数据可以提供这种洞察力,同时还能够帮助企业认清问题,并解决问题,引导企业走向成功。
了解客户的需求
说到社交媒体平台,21世纪的大数据不可避免地包含各种社交媒体渠道(例如Facebook和Twitter)的客户数据。如果企业能够很好地利用这些数据,就能够从中获取利益,包括财务方面或客户忠诚度方面。换句话说,如果企业了解客户的需求,客户几乎可以确定成为采购者。
无线运营商T-Mobile认为社交媒体数据非常宝贵。在认识到这些平台带来的独特机会后,运营商会非常积极地参与社交媒体,并努力倾听顾客的意见。或许更重要的是(+微信关注网络世界),运营商可以根据这些反馈意见在必要的时候对其服务和产品作出调整。在6月份,T-Mobile为新的LG G3设备开展的营销活动,在此期间,他们每天送一台设备给社交媒体的关注者。这笔开支对于该公司来说很小,但却给企业带来高的营销效果。
不要让大数据压倒你
虽然分析大数据非常有用,但重要的是要记住,企业基于这些数据采取的行动最终能够带来持久的影响。如果企业深陷于数据分析、研究和数据收集,很容易舍本逐末。如果企业不根据这些数据采取行动和措施,数据也就只是数据,不会给企业带来任何有益的影响。
如果你的企业正在开始接受大数据,请确保速度和简单。你应该尽可能地收集和分析数据,但不要让它成为企业的重点工作。此外,企业还应该投资于解决方案来实现一定程度的自动化,不仅在数据收集和分析上,还有执行操作步骤等。如果市场对特定产品的需求上升或减少,企业可以部署计算机软件,并根据这些数据来自动调整产品价格,这种投资能够帮助企业实现未来的灵活性和自由。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14