
logistic回归样本量的估算,经验之谈
样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。
他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。
本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。
其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。
比如,你事前没有估计,假设你做了20例,发现是阴性结果。如果事前估计的话,可能会提示你需要30例或25例可能会得出阳性结果,那这时候你会不会后悔没有事前估计?
当然,你可以补实验,但是不管从哪方面角度来讲,补做的实验跟一开始做得实验可能各种条件已经变化,如果你在杂志中说你的实验是补做的,那估计发表的可能性就不大了。
一般来说,简单的研究,比如组间比较,包括两组和多组比较,都有比较成熟的公式计算一下你到底需要多少例数。这些在多数的统计学教材和流行病学教材中都有提及。
而对于较为复杂的研究,比如多重线性回归、logistic回归之类的,涉及多个因素。这种方法理论上也是有计算公式的,但是目前来讲,似乎尚无大家公认有效的公式,而且这些公式大都计算繁琐,因此,现实中很少有人对logistic回归等这样的分析方法采用计算的方法来估计样本量。而更多地是采用经验法。
其实关于logistic回归的样本量在部分著作中也有提及,一般来讲,比较有把握的说法是:每个结局至少需要10例样品。
这里说得是每个结局。例如,观察胃癌的危险因素,那就是说,胃癌是结局,不是你的总的例数,而是胃癌的例数就需要这么多,那总的例数当然更多。比如我有7个研究因素,那我就至少需要70例,如果你是1:1的研究,那总共就需要140例。如果1:2甚至更高的,那就需要的更多了。
而且,样本量的大小也不能光看这一个,如果你的研究因素中出现多重共线性等问题,那可能需要更多的样本,如果你的因变量不是二分类,而是多分类,可能也需要更大的样本来保证你的结果的可靠性。
理论上来讲,logistic回归采用的是最大似然估计,这种估计方法有很多优点,然而,一个主要的缺点就是,必须有足够的样本才能保证它的优点,或者说,它的优点都是建立在大样本的基础上的。一般来讲,logistic回归需要的样本量要多于多重线性回归。
最后仍然需要说一句,目前确实没有很好的、很权威的关于logistic回归样本量的估计方法,更多的都是根据自己的经验以及分析过程中的细节发现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16