
如何避免自嗨型的数据分析?你必知的三大法则
身为数据分析师的你,有没有经历过这样的苦恼?写了那么多页PPT没人耐心看?提了那么多的数据后却没有然后?业务部门觉得你拿着高薪没干啥活(O(∩_∩)O哈哈~) … …
是的,数据分析师们拉了很多数据、画了很多图、建了很多模型,但是,并没有传说中的数据驱动业务,或许连装饰业务都谈不上?
这是不是有点令人绝望?
本文主要从源头角度帮助数据工作者合理判断识别需求,并通过需求+沟通+落地三大法则,帮助数据人员发挥数据在企业中的价值,少走弯路。
关键词:数据需求、基本要素、落地法则
为什么自嗨?
还记得你的分析报告怎么出来的吗?领导的灵感一现?套用各种挖掘算法的结果?业务部门随口一提的延伸?等等。
不管是哪种,不管是谁提的,让我们一起来想想,你分析的需求站的住脚吗?是伪需求还是真实需求?为什么会有此需求?最关键的是这个需求是数据能够解决的吗?
1、需求的主要来源
老大的敏锐眼光:这还用说么
其他部门提出:业务、产品、运营、市场等
业界在做的:BAT的做法,可归纳到前2项
自驱动:不干活,那怎么行
2、需求三大基本要素
数据需求的分析和判断是一个综合判断过程,简单来说应当具备三大基本元素:
第一元素:现有的需求,是能够用数据去解决的,这样数据才有用武之力!
第二元素:现有的需求,必须要有支持分析、解决的基础数据来源,不管是内部的还是外部的,否则就相当于无源之水,无本之木,只能作罢。所以企业“养数据”很关键。
第三元素:现有的需求,用数据的手段解决后可以提取有效的、可执行的落地方案,否则只能是绣花枕头,看看而已。
当然除了这些还有其他的,比如这个需求是否紧急、投入产比如何、当下是否有足够的资源支撑等等。
如何避免自嗨?
独乐乐不如众乐乐,大家利益绑定、战线统一岂不是更好?(其实操作起来也是有一定难度,但是态度要摆正)
三大法则:需求+沟通+落地
1、需求分析:洞察本质
可以使用场景还原法则:数据需求什么?具体问题是什么样的?需要解决这个问题的是谁?什么情况下会需要?业务逻辑是什么?目的是什么?——需要注意的是,这里要深入分析需求提出者深层次的目的,洞察根本需求才能找出更合理的对策。
举个栗子:有个用户说想吃火锅,可是,他真的是嘴馋想吃火锅吗?周围可能没有火锅店。其实他可能是饿了,如果当时你能快速给他个包子,不仅能满足其根本需求,还更节省成本。
需求判断的过程,每个人都有一套自己的方法,适合自己、适合当下即可,多问几个为什么会有帮助2、沟通为先:抱团取暖
数据分析的结果或者说数据的结果最终是要应用到业务中去,那么寻求业务部门的支持就尤为重要,如果需求直接来自于业务部门就更好了。这样有2个好处:一是能更好的知道数据的应用场景,提供更佳的解决方案;二是能真正落地使用,避免纸上谈兵。
不管是耍酷、卖萌还是秀肌肉,搞好关系很重要,想想产品汪们吧,分析狮也是一样3、落地应用:是骡子是马拉出来溜溜
分析要有落地方案:数据很多,结果也很多,不同的人有不同的领悟和业务解读,但是,数据的重要性不在于量有多大、算法有多重要,而在于接地气,能创造价值。
你说数据很有指导价值,**指标上升了**%,SO WHAT?!
你说你的分析结果很棒,那告诉我,接下来,该怎么做?!
分析要有检验和迭代:数据分析的结果存在一定的概率性、偶然性,而现实业务比较复杂,两者发生的情况未必一致,所以分析结果要有检验标准,做的好与不好要有量化、可衡量的指标。同时,在实际应用过程中,要跟踪、改进、迭代。这个过程同产品迭代过程。后面有时间会重点说。
避免使用过于专业的术语,使用业务人员或外行人员能理解的沟通方式和语言会提高效率
其实企业中的真实数据分析远比想象中复杂,在一定情况也并非需要多么高大上、多么复杂的模型。因此,对于数据分析工作者来说,如何根据现实情况,判断、引领需求,快速创造价值就显得尤为重要。这在一定程度上对数据工作者的综合能力较高,一句话概括为:用产品的思维做数据,用解决方案的思维做数据。我们不相信高精尖、我们相信最终结果。
希望本文对正在为数据价值困惑的朋友有所启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13