京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据究竟是什么?一句话让你认识并读懂大数据
什么是大数据,很多的朋友可能对大数据不是很了解,迫切需要了解大数据,下面新霸哥将用一句话来让你认识并读懂大数据,大数据就是无法通过人工,在合理时间内达到管理处理并整理成为人类所能解读的信息。
大数据特征
大数据就是无法通过人工的方式来完成数据分析和处理,需要借助工具才能完成相应的数据处理。大数据通常有3个特征:数量,种类,速度。准确的来说可以用大量,多样性,速度快以及价值高和密度低这四大特征来描述大数据。
一、大量性,数据量的级别从GB至、PB、乃至ZB上升,可称为海量,巨量甚至超量。并且以很快的速度在增长。最为典型的就是我们使用的微信,每天都会产生上亿级别的数据,来自不同领域,不同平台的用户都会产生大量的数据,这些数据是在不断的增长的,并且每个时间点都是不一样的,面对这样高速的增加,需要支撑的服务也是有要求的,这就需要有高并发高吞吐量的服务器来支撑。
二、多样性。数据信息由原来的简单数值、字符和文本向网页、图片、视频、图像和位置信息等半结构化和非结构化的数据类型发展,并且有一个通过的特征,信息大多分布在不同的地理位置、不同的存储设备以及不同的数据管理平台。简单的总结为三点:(1)数据来源多,和我们生活密切相关的社交应用像微博、微信、社交网站等等。(2)数据类型繁多,来自同一个平台可能就有不同的数据类型,图片,视频等等。(3)数据之间的关联性强,交互频繁,大型电子商务网站和社交网络中,一些用户的点击行为在一定程度上反映了该用户潜在的兴趣爱好和需求,链接之间的关联性是很强的。
三、快速化,大数据多数据的处理也是有一定的要求的,有的应用要求对数据的处理做到实时、快速。比较常见的就是我们最好的1元购,每次都有来自不同区域的海量数据,要在一定的时间内完成数据的计算和分析,这就需要将分布式计算、并行计算等等深度的结合才能满足需求的。
四、价值高密度低,我们经常会看到很多虚假的信息,通常情况下正在有价值的信息还是很分散的、密度非常低的,要在海量中寻求有价值的信息还是很有技术要求的。
大数据应用
大数据的广泛存在是有一定的商业价值的,现在大数据已经被广泛的应用在医疗,教育,科研等等很多领域,比较常见的就是网络营销,在网上我们会经常遇到这样的问题,我们曾经搜索过的商品或者某个产品在某个网站上有产品推荐,比较常见的就是百度推广,我们在搜索网页的时候会有相关产品的推荐,这就是大数据的一个最为典型的数据分析应用,根据不同用户的不同需求会有不同商品的推荐。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27