
数据分析/机器学习模型无法部署的八大原因
不要成为一个模型无法部署的数据科学家
举一个典型的模型部署失败的实例:Netflix大奖竞赛。简单来说,这是一个面向大众开放的竞赛,参与者需要写一个协同过滤算法来预测电影的用户评级。胜出者获得了1000万美元的大奖。然而最后,这个完整的模型却没有得到部署。
不仅仅是Netflix,大多数公司都发生过这种戏剧性的事件。就在最近,我与许多一流数据分析公司的公司高管进行了交流,而他们最大的担忧就是公司50%的预测模型都得不到实现。
为什么要建立一个在现实世界中无法使用的模型呢?这就好像你做一个蛋糕,尝试过后发现很美味,但却永远不让任何人吃一个道理。
在本文中,我列出了在建立模型时你应当谨记的所有可能原因。在我的职业生涯中,我曾多次遇到过这种情况。因此,我认为在我经验的帮助下,可以帮助你克服这种情况。
模型部署失败的8个原因
1、高假正性(FP):这看上去似乎有点专业,而目前最重要的是了解什么是假正。假设在一个分类模型中,我们想要预测客户是应答者(给出答案的人)还是非应答者(不给出答案的人)
想象一下,如果你预测一个人X会是一个应答者,但实际上他并不会给出任何答案。这种情况下,X就被称为假正。那么在现实世界中这会造成什么影响,我知道你想要问这个问题。
举个例子,例如你需要为1000个客户建立一个保留活动,在这1000个客户中会有100个客户流失(离开)。你创建一个了不起的模型,在这个模型中前十个人中有四个人会离开(相等的十大部分)
这就意味着,从你预测的前100个客户中,40个客户会流失。所以,你推荐企业专为这100个客户提供一个吸引人的购物方案,这样可以阻止他们流失。但是,这仍有很大问题。
问题就是你花费在那些客户身上的每一美元中,只有0.4美元被用来阻止客户流失。剩下的0.6美元都浪费在那些并不是真心想要离开的假正(FP)客户身上。
2、不了解基本业务模型:最近,对于使用机器学习算法和更加复杂的模型建立技术的需求正在日益增长。换句话说,各企业正在逐渐减少使用传统的模型技术。
毫无疑问,使用机器学习技术可以加大预测能力。但是企业仍不是太接受这种黑盒技术。以我经验而言,这将导致实施一个预测策略时会需要更长的前置时间。由于大多数的应用程序业务上是高度动态的,该模型也会由于较长的前置时间变得越来越冗余
3、对业务问题不够了解:创建过预测模型对分析师或者业务同行而言都会在其履历上添加浓墨重彩的一笔。然而,这并不是你建立模型的目的。在某些情况下,分析师进入创建模型阶段,并会试图削减本应分配给了解业务问题的时间。
4、模型实施过于复杂:预测能力是这些模型实施的灵魂,但是一般情况下,预测能力是以模型的复杂度为代价的。为使模型更加健壮我们开始引入双变量和三变量,不论这些变量对业务来说有没有意义。这样的模型在书本上可能是十分精彩的,然而就因如此,他们也只能停留在书本上,并不能在现实世界中实现。
5、不能解决根本原因,仅仅试图提高一个过程的影响。我们为什么做模型?最重要的原因是为找到一个特定响应的驱动程序。这些驱动程序又是什么?驱动程序往往是响应率的根本原因。如果你引进所有影响当做输入变量,然后这些变量也会作为重要输出时将会发生什么?这将没有任何用处,因为你没有改变任何可能带来变化的事情。
6、训练人口与得分人口完全不同:在很多情况下,我们最终是在一个与实际人口完全不同的人口中建立模型。举例来说,如果你正在创建一个针对人口的活动,并且以前没有类似的活动。在这种情况下,我们先从基本假设开始,假设该人口具有高响应率,且有可能有高增量响应率。但是这种假设很少是真实的,因此该模型将很难使用。
7、不稳定模型:高性能模型通常是高度不稳定的,并且不在同一时间内执行。在这种情况下,业务可能需要高频的模型修正。随着模型创建的前置时间越来越长,业务可能会开始回到基于直觉的策略。
8、依赖于高动态变量的模型:动态变量给模型带来真正的预测能力。然而,你也可能会有这样的变量,它的赋值永远不会显示在训练窗口。
例如,你可能得到一些工作日的销售量作为重要变量来预测一个分支的月销售量。我们就说这种变量具有高预测性。但是对于我们的评分窗口而言,有一些月份仅仅有10-15天的工作日。如果你的训练数据没有这样的月份,你的模型可能无法进行准确预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15