
小白学数据分析--渠道、运营、数据_I
上周六做了一个演讲,关于渠道、数据、运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下。不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解。
渠道是最有效的获取潜在用户的方式
渠道存在海量的用户资源,并服务于开发者。渠道本身聚合了大量的用户,进而形成平台,成为了平台,就必然存在“货架”,而这些货架的位置是有限的资源,但是开发者对于资源争夺和需求确实强烈,这点使得渠道货架的位置变得无比重要,再者,开发者也一直认为获得了最佳的位置,就会带来不错的收益,基于此点认识,导致了渠道投放成本的增加,而渠道在寻找最佳适合渠道的产品征途上变得异常艰难。其实,开发者没有找到适合自己的最佳渠道,渠道没有寻找到最适合自己用户资源的最佳产品。
最佳渠道是让产品利益最大化的方式
最佳渠道可以精准定位用户,并建立忠诚关系。说到这里,其实有两层含义,第一点,作为渠道而言,希望自己飞用户资源是最契合产品需求的,进而对于自己用户资源的把握和PUSH,决定开发者认定这个渠道是否对他是有价值的,第二,本身渠道的用户与渠道之间是否存在稳定的关系,是否对于渠道存在一定忠诚度。如果本身渠道用户在渠道中没有忠诚度,比如长期回访用户很少,谈不上忠诚度,进而即使用户从渠道了解产品,那么留存率也会受到影响。
品牌的力量
作为一个渠道也好,作为产品也罢,其实是需要品牌的。现在看到很多产品都在挣快钱,先过冬再说,这点不能说是错的,但是绝对也不是对的。
渠道需要品牌建设
针对这点来说,最简单的一句话,渠道需要回头客。一般而言,作为玩家或者普通用户,对于每一个渠道都会产生一个固定的认识,这个固定认识的其实就是品牌的影响,如果你的渠道总是提供的一些带有捆绑软件的渠道,那自然用户对于你的认识是不好的。这点就有点像那句话,今年过节不收礼,收礼只收脑白金。当用户一旦形成了对于某一个渠道的认识后,要想去改变是很困难的。
说到这里,可以多说一句,如果你的渠道其他特性没有,但是就是下载速度比别人快一倍,那么当用户体验过后,他对于你的品牌建设和认知的第一步就已经形成了,那就是这个渠道下载速度快,软件包是最新的,干净的。
渠道的品牌建设也许不需要面面俱到,但是可能一点就够。因为用户对于品牌的忠诚不需要太多理由。那么,相应的你会去挖掘自己的渠道具有以下的特点:
产品需要品牌
针对这点,我不想说的很多,在手游这个圈子,至少我们已经看到一些产品是具有这个品牌影响力的,如今交叉换量这种形式的出现,我想一方面是得益于交叉用户,大用户资源,但在背后的,其实还是形成的口碑,品牌在影响最终用户的行为。
要建立数据监控体系?
其实,说到数据分析监控体系,这是两个方面的工作,一方面从渠道而言,除了固有的网站分析那些之外,还要结合自己的商业逻辑设计一套数据分析指标体系,今天再次对这点不展开讨论,其实更多时候,针对这些开发者和产品,他们更需要因地制宜的数据分析模型,来优化渠道投放和策略。
无法衡量,就无法改进
这句话是说给渠道和开发者听的。现在很多时候我们会发现,市场人员往往制定的营销策略是滞后的,不能实施应对市场的变化,其实原因就是在没有监控实施变化,进而进行优化调整,这就导致了成本的不断增加。再者,推广营销人员,对于产品的把控周期太短,如果只是把KPI定在了下载激活,自然用户后续的质量,行为,就和这些人员没有关系了,自然也就不会关注产品本身的一些质量,优化问题,是否你的推广策略适合该渠道的投放。而这就是第二点,我们太多时候忽略了用户下载后的行为,对于渠道而言,当用户下载后,是否再次返回渠道,进行相关关注,是否更新等等,对于产品人员来说,是否推广用户的质量达到要求(次日、三日、七日留存率,新手通过率等等)
数据驱动下的最佳渠道优化策略
目标定位
什么能做,什么不能做
两方面,第一方面,了解自己的用户到底是什么特点,是否和最初产品设计需求背离;第二点,基于产品的渠道特点是什么,渠道本身特点是什么?为此,需要建立针对目标定位的数据分析内容。
了解渠道与定位产品
获取数据
哪些先去做,那些后做
这点其实更多的把重心放在渠道推广的效应层面上,从宏观了解渠道推广的影响,对比自然增长阶段水平,或者对比往期推广效果。这点和目标定位是存在紧密关系的。
渠道监测
如果说获取数据是从比较粗的粒度上看待问题的话,那么渠道监测僵尸全面了解渠道的表现情况,这里将不仅仅是下载激活,还有留存率,还有付费收益等等环节,推广运营解决不是下载激活,而是带来自然的活跃和收益,并不断增长的良性循环。因为我们了解一下的事实:
同时,好的渠道推广运营也必然了解这条曲线:
关于策略优化和深度推广,将在以后的内容继续阐述。
在此先上图,关于渠道优化的点有如下:
有关于渠道深度推广部分,这里主要会将一个闭环介绍给各位,内容稍多下次再议
我这里有一些如何通过数据优化渠道推广的策略,谨在此向各位展示一下,针对这些的案例分析和描述会在后续的文章中出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04