京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--什么是DAU_II[玩家粘性分析模型]
一直以来,我们很重视新登用户的研究,为此,我们设计了留存(retention)这个概念,有关于这个概念,之前我说了很多,研究了很多,当然写出来的只是一部分,在后续针对这个概念还会整理一些想法。不过今天的重点落在了另一个方向上,但是针对的目标群体还是同一个,这就是新登用户群体。
我们很重视,新登用户留下的概率,所谓留存率,也是一个概率的问题,即用户再次进入游戏的概率可能性。不过这里面我发现了,不同时间的留存率(比如次日、二日、三日等等)存在用户的交叉,也就是说次日登录用户,也可能在二日也登录游戏。这点是肯定存在的。Anyway,以上是基于留存这一个基调讨论的,而今天讨论的是基于流失的基调。以下所做的探讨,如有不同意见或者新的想法,请各位尽情抒发和表达。
关于什么是留存率,这里我只给出下面的一张图,不做解释了,想了解,看以前的材料就OK了。

手机游戏现在都讲究一个渠道推广,这点是用户获取的重点来源,我们很注重量的积累,很注重下载,很注重激活。相信很多也是到此为止了。同时也有一个观点,如果在大的渠道,在最NB的位置,就肯定得到最多,最好的用户。其实,在运营,推广,研发这几条线上,是存在脱节的,这点也就造成了在今天狠花钱,买广告,买流量,买位置。其实,你不知道自己究竟这么做,能够起到多大的效果。
说到这,我想到最近看到的数据报告,这个春节,似乎给我们大家开了一个玩笑,因为我们发现,尽管很多人砸了不少钱,花了不少精力买流量,买位置,但用户没有增长,质量也表现一般(对与这一点,可对照自己的游戏表现,自己分析)。今天的流失计算探讨也是要对于刚才啰嗦的一大堆做一个数据管理和分析。
OK,进入正题。
留存率遗留的问题
如刚才的留存率示意图,我们发现留存是针对新登用户在新登后每一天的状态表现,换句话就是在此回到游戏的概率,因为游戏与用户之间存在一个曝光度的问题,你越是在一段时间频繁接触,你返回游戏的可能性就会越大,这个概率就是留存率。留存率是以每一天作为一个独立研究对象在分析问题。是以每一个独立的时间点作为计算口径的,但是从用户的角度来看,前一天登录游戏的用户,在今天登录的可能性就会大很多(曝光度的问题),而这点,在留存率上没有做出解答,因为相邻两天的用户之间的相关性和交叉关系,即前一天的留存用户中,有一大部分是在今天也会登录的。有关这部分的探讨放在后续的文章中。

今天,我将变化一个角度来分析问题,而以下的计算模型,也将统一DNU和DAU之间的关系,加强我们对于DAU、DNU的理解和使用。
DAU是一个指数
我们清楚,DAU是有DNU和之前老用户组成的。这里的老用户我们指的是除了当日新登之外的用户都是老用户,但是这种方式不能足够说明一些问题。在此,我们将重点针对OLD的部分进行分解和模型分析。

所谓OLD部分其实也是由之前不同时间点的新登用户组成的。因为每个用户的状态都是由新登用户向活跃用户过渡的。那么OLD的组成我们就可以按照以下的方式进行划分:

下面举一个例子
3月22日的DAU为220,3月22日的DNU为77,那么剩下3月22日的OLD=220-77=143。那么这143=130*17.7%+127*7.9%+132*5.3%+131*1.5%+182*2.2%+137*3.6%+129*0.0%+…

有上述的计算我们了解到,所谓老用户,就是之前每日的DNU到统计DAU之日的留存率乘积并进行加和的数量。即
DAUi=DNUi+DNU(i-1)*DAY1_Retention_Rate+DNU(i-2)*DAY2_Retention_Rate+DNU(i-n)*DAYn_Retention_Rate
以上公式将DAU进行拆分和细化了,如果我们仔细来看的话,会发现,DAU是由不同的DNU进行加权得到的综合值。而这个值却是代表了用户粘性变化和留存表现的综合指数。
然而如果我们按照以上的逻辑计算下去,计算量会很大,而且意义不是很大,如何有效的衡量这个指数,我将继续阐述给各位。
上述的公式告诉了DAU是由之前不同时间点的回流DNU组成的,因此,我们可以得到不同时间点的回流DNU占据DAU的水平,即
Return_DNU(i-1)= DNU(i-1)*DAY1_Retention_Rate
DAUi_1%= Return_DNU(i-1)/ DAUi
DAUi_2%= Return_DNU(i-2)/ DAUi
…
DAUi_n%= Return_DNU(i-n)/ DAUi,故
DAUi_1%+ DAUi_2% + DAUi_n%=100%
实际上来看,利用以上的原理,我们可以知道最近一周的DNU中,有多少贡献给了今日的DAU中,这点其实很重要,因为自此,我们知道了用户对于游戏的关注度和粘性,如果你的游戏中,每日有超过50%的DAU是一周之前的DNU贡献出来的,可以想象,你的游戏黏着能力是很强的,至少,对于用户而言,近期(至少7天是不会离开游戏,或者淡忘游戏的)。下面我将具体的说一个例子:
按照上述逻辑,我计算了每个DAU的最近7日DNU贡献率,曲线如下:
在图中,我们看到,最近7日DNU对于DAU的贡献率持续走低,保持在20%左右,也就是说,现在每日的DAU中有20%的用户是最近7日的DNU贡献出来的。

反过来说,也就意味着,这款游戏中,7日之前的用户对于日DAU的贡献是比较大的,从下图来看,距离统计DAU 7天之前的用户占比达到60%+,即用户在该游戏的活跃周期较长,新增用户群体的质量和黏着性较好。

以上的模型计算,其实在很多方面都可以使用,比如我们在检测渠道用户的质量时,就可以基于以上的逻辑进行分析,再者比如付费用户的付费周期研究也可以基于以上的模型进行分析。
本质上,以上的计算逻辑,解决了DAU与DNU之间的划分矛盾,其实DAU可以认为是之前不同时间点的DNU组成的,在这种逻辑下,我们可以很快的发现目前我们游戏的活跃用户群的状态构成,比如,如果都是大量的7日之前的用户,不断的保持活跃,那么意味着该游戏的粘性还是保持在很客观的水平上。这点也恰恰解决了我在文章开头所提到的曝光度的问题。因为一旦游戏不再曝光在用户面前,那就意味着,游戏可能被启动的概率大大降低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22