京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何通过招聘数据分析,提升招聘营销效果
不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。
所以,数据分析并不一定要等到年度总结时才做。每个项目或阶段都可以为我们提供分析数据的机会,而通过分析数据,我们又能为下一段工作提供指引。不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。接下来,我将如何通过招聘数据分析,提升招聘营销效果,谈谈我的看法。
先搞清楚你到底要收集哪些数据进行数据分析的第一步,就是要搞清楚你到底要收集哪些数据,以及你计划如何使用它们。你做数据分析的目的是期望让你的招聘团队看到他努力的结果,以及让他们录入这些数据的价值所在。比方说,你知道前雇员们的姓名和地址,有助你了解到你的员工都是来自什么行业、地区。让数据成为招聘官的朋友收集数据是一件很痛苦的事情,尤其这些数据不在日常工作项内——这意味着要给招聘官们增加额外的工作。所以,你需要和你的招聘官们开个会,解释一下你需要录入的数据的重要性,解释一下这些数据将如何让他们的工作变得更方便。假如通过数据分析,他们能提升获取简历的质量,减少他们筛选简历和面试候选人所需要花费的时间,他们会很乐意支持你的工作。收集半年以上的数据来进行分析我们常说“金三银四”、“金九银十”,招聘总是有高峰和低谷的时候。进行统计分析,你需要充分考虑到招聘的季节性,确保你至少有半年到一年的招聘数据点。

基于这些数据分析出来的结果才更有参考价值。我们可以从以下四个方面来进行数据分析。通过这些数据分析,将有效提升你招聘营销的效果,让你的招聘事半功倍。了解并定义从申请到雇佣的比率着眼于招聘,你首先需要分析的指标,就是从申请到聘用的比率。这个数据将告诉你,聘用一名新员工,到底需要多少申请者。当然,在招聘分析中,我们还可能会分析到简历筛选的通过率、面试到场率、初试通过率、复试通过率等等。做这一项的分析,我们首先计算出一个整体的平均值,然后再探究不同岗位的从申请到聘用的比率,看看它是高于平均值,还是低于平均值,以便你能更有效地管理你的招聘活动。如果是高于平均值,看看你的投放情况,了解一下哪些活动来带了简历,但是简历的品质却很差。在这一基础上,你可以和招聘官谈谈这些岗位的工作描述,增加一些额外的工作条件和细节,以便让申请者更明确岗位的需求。
如果低于平均值,需要看看这些岗位是否需要较高的技能水平及特定的教育层次,再看看招聘周期是否超过平均值。如果这个岗位只有很少的人申请,需要很长时间才招到人,这意味着你需要关注投放渠道的有效性,以及考虑通过内容创造候选人考虑你公司岗位的关键利益点。对候选人进行地理定位如果公司总部在长沙,来深圳招人,成功率会有多大?或者说,公司总部在深圳南山区,但候选人居住在罗湖区,成功率会有多大?对候选人进行地理定位,了解一下前来面试的候选人距离你的公司到底有多远:哪一区域内的候选人会更多?候选人所处地理位置的临界点在哪里?……将有助于你在目标候选人生活的高频区域有效地安排你的招聘活动,避免做无用功。
了解员工加盟之前所从事的行业收集新员工加盟公司之前所从事的行业,可以为你的招聘提供有价值的参考,甚至可能重塑你的招聘行为。以招聘销售人员为例,以前从事过哪一个行业的销售人员更容易得到认可,更容易创造良好的业绩,将让你未来的招聘行为更具备针对性。对参与面试后的候选人进行调研在这个阶段,候选人对你的积极响应,将为你的招聘工作带来极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26