
如何通过招聘数据分析,提升招聘营销效果
不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。
所以,数据分析并不一定要等到年度总结时才做。每个项目或阶段都可以为我们提供分析数据的机会,而通过分析数据,我们又能为下一段工作提供指引。不要说“HR大数据”忽悠人,错过或无视数据本身就是一种罪恶。接下来,我将如何通过招聘数据分析,提升招聘营销效果,谈谈我的看法。
先搞清楚你到底要收集哪些数据进行数据分析的第一步,就是要搞清楚你到底要收集哪些数据,以及你计划如何使用它们。你做数据分析的目的是期望让你的招聘团队看到他努力的结果,以及让他们录入这些数据的价值所在。比方说,你知道前雇员们的姓名和地址,有助你了解到你的员工都是来自什么行业、地区。让数据成为招聘官的朋友收集数据是一件很痛苦的事情,尤其这些数据不在日常工作项内——这意味着要给招聘官们增加额外的工作。所以,你需要和你的招聘官们开个会,解释一下你需要录入的数据的重要性,解释一下这些数据将如何让他们的工作变得更方便。假如通过数据分析,他们能提升获取简历的质量,减少他们筛选简历和面试候选人所需要花费的时间,他们会很乐意支持你的工作。收集半年以上的数据来进行分析我们常说“金三银四”、“金九银十”,招聘总是有高峰和低谷的时候。进行统计分析,你需要充分考虑到招聘的季节性,确保你至少有半年到一年的招聘数据点。
基于这些数据分析出来的结果才更有参考价值。我们可以从以下四个方面来进行数据分析。通过这些数据分析,将有效提升你招聘营销的效果,让你的招聘事半功倍。了解并定义从申请到雇佣的比率着眼于招聘,你首先需要分析的指标,就是从申请到聘用的比率。这个数据将告诉你,聘用一名新员工,到底需要多少申请者。当然,在招聘分析中,我们还可能会分析到简历筛选的通过率、面试到场率、初试通过率、复试通过率等等。做这一项的分析,我们首先计算出一个整体的平均值,然后再探究不同岗位的从申请到聘用的比率,看看它是高于平均值,还是低于平均值,以便你能更有效地管理你的招聘活动。如果是高于平均值,看看你的投放情况,了解一下哪些活动来带了简历,但是简历的品质却很差。在这一基础上,你可以和招聘官谈谈这些岗位的工作描述,增加一些额外的工作条件和细节,以便让申请者更明确岗位的需求。
如果低于平均值,需要看看这些岗位是否需要较高的技能水平及特定的教育层次,再看看招聘周期是否超过平均值。如果这个岗位只有很少的人申请,需要很长时间才招到人,这意味着你需要关注投放渠道的有效性,以及考虑通过内容创造候选人考虑你公司岗位的关键利益点。对候选人进行地理定位如果公司总部在长沙,来深圳招人,成功率会有多大?或者说,公司总部在深圳南山区,但候选人居住在罗湖区,成功率会有多大?对候选人进行地理定位,了解一下前来面试的候选人距离你的公司到底有多远:哪一区域内的候选人会更多?候选人所处地理位置的临界点在哪里?……将有助于你在目标候选人生活的高频区域有效地安排你的招聘活动,避免做无用功。
了解员工加盟之前所从事的行业收集新员工加盟公司之前所从事的行业,可以为你的招聘提供有价值的参考,甚至可能重塑你的招聘行为。以招聘销售人员为例,以前从事过哪一个行业的销售人员更容易得到认可,更容易创造良好的业绩,将让你未来的招聘行为更具备针对性。对参与面试后的候选人进行调研在这个阶段,候选人对你的积极响应,将为你的招聘工作带来极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22