
小白学数据分析--有关于流失分析的探讨
早先我曾探讨一个关于流失分析的整套流程问题,也说了流失分析是如何的重要,大概这种解说是苍白无力的,因为拿不出数据来说明这个问题,因此大家就会感觉比较飘渺,今天就是流失分析再次进行探讨,这次从数据的角度来理解为什么要做好流失分析。
挽留一个老用户相比于拉动一个新用户,在游戏收入、产品周期维护方面都有好处的,只是我们现在解决用户入口的问题,但是没有重视用户流失的问题。这个问题就好像一个水池子,有进口,但是也有出口,我们不能只关注进口的进水速率,却忽略了出水口的出水速率。这点对应了我们对于指标的量化和关注,比如当今我们考虑和分析更多的是留存的问题,却鲜有讨论流失问题,不过也可以理解,因为移动互联网上大家都从平台,渠道获得海量用户,至于你愿不愿意待着,我们就不关心了。不过,移动互联网的手游行业却不能不关心,因为手游也是一种端游缩小后一种存在形式,一定意义上手游的分析应去借鉴端游的一些分析思路和管理方法。
因此,我们需要去做好流失分析,并不断的训练、实践。
今天我将利用一系列的指标,来说明流失问题,首先,列出来今天用到的指标:
MNU:月新增用户
MAU:月活跃用户
DAU/MAU:活跃比
M_Churn_Rate:月流失率
OMAU:老活跃用户
M_1-Churn_Rate:月存留用户率
首先我们要明确对于月流失用户的定义:
一般而言,上个月(自然月)登录过游戏但在本月未登录过游戏的用户数。
自然的,对于流失率就是这部分用户数占上个月月活跃的百分比。
针对流失率的计算一种是通过技术手段精确的按照定义进行计算,而另一种方式就是粗略的进行估计计算,此处,说一下如何进行粗略的计算,在后续的讲解中,也会用到此部分知识。
我们知道上个月的月活跃中存在两部分群体:
上个月月活跃用户构成中,一部分是上个月流失用户,另一部分就是过渡到下个月活跃用户中的存留用户。
而在下个月的用户中也存在两部分,一部分就是上个月过度来的存留用户,另一部分就是本月的新增用户。
至此我们得到两个等式
上个月MAU=流失用户+存留用户
本月的MAU=存留用户+本月新增
那么上个月流失用户=上个月MAU-本月的MAU+本月新增
上述的计算方式和通过技术手段计算的流失率基本一致,可以作为粗略估计使用。解决了流失率的计算问题,下面我们就能详细开始分析流失率背后的秘密。
之前在文章中说过,游戏产品是存在一个生命周期问题的,从具体游戏产品的一系列运营来看,产品经理CB、OB和商业化运营阶段,这里面是包含着流失问题的,而且在每个时期的策略和侧重是不同的,今天我将做一些假设,来分析流失,这样便于理解。
假设如下:
月导入新增用户为20000;
月1-Churn_Rate=20%(存留率为20%,即上个月登录过游戏,且本月又登录的用户比例为20%);
月流失率为80%;
DAU/MAU为0.15;
我们可以根据上述的指标进行下述的计算:
上线第一个月
已知:
MNU1=20000
M_1-Churn_Rate1=20%
M_Churn_Rate1=80%
DAU/MAU1=0.15
Old_User(老用户)1=0
那么:
平均的DAU1=0.15*20000=3000
MAU1=20000
上线第二个月
已知:
MNU2=20000
M_1-Churn_Rate2=20%
M_Churn_Rate2=80%
DAU/MAU2=0.15
MAU1=20000
那么:
Old_User(老用户)2=MAU1* M_1-Churn_Rate1=4000
MAU2= Old_User(老用户)2+ MNU2=24000
平均的DAU2=0.15*24000=3600
上线第三个月
……
按照以上的思路进行数据计算,最终能得出来一些数据。
下图为按照流失率80%,月导入量20000进行的计算。
下图为按照流失率70%,月导入量20000进行的计算。
下图为按照流失率60%,月导入量20000进行的计算。
下图为按照流失率90%,月导入量20000进行的计算。
如果大家仔细观察会发现,流失率处于不同水平,反馈的MAU以及DAU都是有差异的,这点差异就是因为流失率的变化引起的。
说到此处,再仔细观察,会发现,流失率达到90%时,基本在第四个月游戏的增长就停滞了,而为80%时,在第6个月开始增长停滞了,70%时在第8个月增长停滞了,60%时在第12个月增长停滞了。也就是说流失率水平的高低也刺激了游戏的用户量变化情况,从游戏设计的角度来看这点是因为游戏大量用户流失,对新用户进入带来一种负面的反馈,对于来用户而言,则生存和游戏下去的信心不足。时间久了,用户群流失就打破游戏原本稳定的环境,此时我们一般通过加大新用户的注入来解决办法。
以上是从游戏角度来解释问题的,下面从数学角度简单的解释一下为什么到了一定的时候,后期数据变化减小,基本上达到了稳定状态。
我们了解到
注:1-Churn_Rate简写为CR%
MAU1=MUN1
MAU2=MAU1*CR1%+MUN2
MAU3=MAU2*CR2%+MNU3
MAU4=MAU3*CR3%+MNU4
……
那么
MAUn=MAUn-1 *CRn-1%+MNUn,且MNUn-1=MNUn-2=…=MNU1,CRn-1%=CRn-2%=…=CR1%,即有
MAUn=MNU*(CR%^n-1+ CR%^n-2+…+ CR1%+1)
由上述等式,可以发现,随着n逐渐增大到一定阶段,对于MAU的影响就变得越来越小。逐步稳定。
侧面来看,如果CR%本身就很小那么这种影响就更小了,也就是说MAU变化很小,但是相对应的流失率就会居高不下,游戏处于了一个放水内耗的时期。
以上是利用一些指标对于流失率进行了一个探讨分析,其实重点就是说流失分析对于一款游戏而言是非常重要的,小处来说是挽留用户,避免流失,大处来说是拉长产品生命周期。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04