
小白学数据分析--相关分析之距离分析在道具购买量的
前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的。今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析。插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍。大家如果需要,请到百度文库或者联系我都OK。
今天将通过Excel和SPSS向大家说说怎么来进行多变量的相关分析,既然是游戏数据分析,那么自然少不了如何利用游戏数据实现多变量的相关分析。在游戏数据分析方面,很多的数据都可以进行相关分析,比如界面按钮的点击次数,今天我们选取游戏道具的购买量进行相关分析。
我们知道游戏道具非常多,换句话说如果进行相关分析,尽管相关分析可以满足我们的计算要求,但是对于我们后期的评估和决策带来非常大不便利,所以这里建议大家做道具的相关分析先进行道具分类,比如FPS游戏中把AK47,M4A1归类为突击步枪,或者再高一个类别,武器,这样在不同的分类维度下进行相关分析,便于我们从不同的高度和角度来进行分析和决策。以下所示为示例数据(模拟),可以看到有7个品类的道具,从101-107,取出来共计10周的数据。
下面我们来看如何通过Excel进行多变量的相关分析。如何打开数据分析,选择相关分析,在上次文章已经提到了,这里不再累述,这里打开一下的对话框。
选择数据,数据区域选择B1:H1,选择好输出区域,点击确定,得到如下的相似矩阵:
有关这个矩阵的分析稍后在说完SPSS的操作再讲解,下面看看SPSS如何进行相关分析。在SPSS中,有专门的模块进行多变量的相关分析。SPSS中针对相关分析的三部分设置了三部分模块进行独立的分析。多变量的相关分析在SPSS中叫做距离分析,相对偏相关分析通过控制一些被认为次要的变量的影响得到两个变量之间的相关系数,距离分析解决的问题更加复杂,因为实际应用时每一个变量都携带了一定的信息,但是彼此在某些方面又是重叠的,举个例子,比如有个变量叫做突击步枪,突击步枪的销售量代表了AK47,M4A1等突击步枪的销售情况和信息,同时突击步枪也属于武器类别,与机枪等类别又有交叉,因为机枪和突击步枪都属于武器类别。
距离分析是对变量之间相似或者不相似程度的测度,通过计算一对变量之间的广义距离,将距离较小的变量归为一类,距离较大的变量归为其他类,这也是为聚类分析、因子分析打下基础。有关距离分析的更多详细内容这里不再累述,大家可以自己百度。
具体操作如下,首先看到SPSS中展示的数据,此为101-107系列道具的销售量:
之后选择分析|相关|距离界面,选择界面如下所示:
弹出对话框,如下所示,将var101-var107选入变量框中,此处最少包含两个变量。
计算距离包括两个两选择项,个案间和变量间,表示输出结果是个案或者变量间距离分析值。度量标准包括不相似性和相似性两个选项以及一个度量按钮。不相似性表示测度方法为不相似性测度。此时如果点击度量,弹出来距离:非相似性度量对话框,如下图所示:
有关该方面知识在这里不作解释和阐述,主要来看距离:相似性对话框的设置,首先如下图所示:
度量标准选择区间|Pearson相关性,转换值标准化|Z得分,其他的选项默认就可以了,这里简单解释一下几个选择的含义。Pearson相关性表示两个值矢量之间的积矩相关性,是定矩数据的缺省相似性测量。转换值是在计算距离之前对变量进行标准化的方法,这里使用Z得分,Z得分表示将值标准化到均值为0且标准差为1的Z得分,但同时注意标准化要指定标准化对象,这里是变量。
在完成以上的设置后,点击确定将会输出结果,上面的为案例处理摘要,下面的为距离分析的近似矩阵。
下面我们结合Excel和SPSS的分析结果来具体分析一下,在Excel的分析结果中,我们发现105系列道具相关性最弱,那么这个品类就需要我们去进一步探究一下。从SPSS的结果来看,105系列道具确实相关性系数较低,其次是103系列道具相关系数也比较低,但是从总体的Excel和SPSS分析结果来看,101与106、102与106、103与105、104与106、107与102相关性很高,这就是我们得出的结论,最后我们来看看这几个类别道具具体指的是什么:
101:突击步枪
102:冲锋枪
103:机枪
104:狙击步枪
105:shouqiang
106:投掷武器
107:近战武器
故而从这里我们再来看一下,大概了解了FPS游戏的玩家作战配置,突击步枪+投掷武器;冲锋枪+投掷武器;机枪+投掷武器;狙击步枪+投掷武器;冲锋枪+近战武器。当然这种配置不是绝对的,还要考虑游戏本身在这方面的设计情况,比如很多游戏主武器是突击步枪,副武器是冲锋枪,这种情况是要结合业务来考虑,而最终我们通过分析得出的结果,也要根据具体的需要进行筛选和调整。
以上是相关性分析的最复杂的一部分,希望解决一部分网友的疑问,这种方法的参考性和实际利用性还需要进一步检验和证明,属于探索内容,请使用者慎重考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27