
小白学数据分析--相关分析之距离分析在道具购买量的
前几天,写过一篇关于相关分析的的文章,很多人都看到了并有很多人在咨询关于这篇文章的一些内容,相关分析是一类很有用的分析方法,如之前所提到的,相关分析由三部分组成,前几日的文章是讲了其中第一部分,第二部分是偏相关分析,第三部分就是复相关分析,说白了其实就是相关分析变量的多少来确定这三部分的。今天这里不谈偏相关分析,以为网友给我截图,问我下面的成交量相关系数的是怎么算出来的,其实这个就是复相关的典型应用,多变量的相关分析。插一句,该图来自于腾讯大讲堂15-市场研究及数据分析理念及方法概要介绍。大家如果需要,请到百度文库或者联系我都OK。
今天将通过Excel和SPSS向大家说说怎么来进行多变量的相关分析,既然是游戏数据分析,那么自然少不了如何利用游戏数据实现多变量的相关分析。在游戏数据分析方面,很多的数据都可以进行相关分析,比如界面按钮的点击次数,今天我们选取游戏道具的购买量进行相关分析。
我们知道游戏道具非常多,换句话说如果进行相关分析,尽管相关分析可以满足我们的计算要求,但是对于我们后期的评估和决策带来非常大不便利,所以这里建议大家做道具的相关分析先进行道具分类,比如FPS游戏中把AK47,M4A1归类为突击步枪,或者再高一个类别,武器,这样在不同的分类维度下进行相关分析,便于我们从不同的高度和角度来进行分析和决策。以下所示为示例数据(模拟),可以看到有7个品类的道具,从101-107,取出来共计10周的数据。
下面我们来看如何通过Excel进行多变量的相关分析。如何打开数据分析,选择相关分析,在上次文章已经提到了,这里不再累述,这里打开一下的对话框。
选择数据,数据区域选择B1:H1,选择好输出区域,点击确定,得到如下的相似矩阵:
有关这个矩阵的分析稍后在说完SPSS的操作再讲解,下面看看SPSS如何进行相关分析。在SPSS中,有专门的模块进行多变量的相关分析。SPSS中针对相关分析的三部分设置了三部分模块进行独立的分析。多变量的相关分析在SPSS中叫做距离分析,相对偏相关分析通过控制一些被认为次要的变量的影响得到两个变量之间的相关系数,距离分析解决的问题更加复杂,因为实际应用时每一个变量都携带了一定的信息,但是彼此在某些方面又是重叠的,举个例子,比如有个变量叫做突击步枪,突击步枪的销售量代表了AK47,M4A1等突击步枪的销售情况和信息,同时突击步枪也属于武器类别,与机枪等类别又有交叉,因为机枪和突击步枪都属于武器类别。
距离分析是对变量之间相似或者不相似程度的测度,通过计算一对变量之间的广义距离,将距离较小的变量归为一类,距离较大的变量归为其他类,这也是为聚类分析、因子分析打下基础。有关距离分析的更多详细内容这里不再累述,大家可以自己百度。
具体操作如下,首先看到SPSS中展示的数据,此为101-107系列道具的销售量:
之后选择分析|相关|距离界面,选择界面如下所示:
弹出对话框,如下所示,将var101-var107选入变量框中,此处最少包含两个变量。
计算距离包括两个两选择项,个案间和变量间,表示输出结果是个案或者变量间距离分析值。度量标准包括不相似性和相似性两个选项以及一个度量按钮。不相似性表示测度方法为不相似性测度。此时如果点击度量,弹出来距离:非相似性度量对话框,如下图所示:
有关该方面知识在这里不作解释和阐述,主要来看距离:相似性对话框的设置,首先如下图所示:
度量标准选择区间|Pearson相关性,转换值标准化|Z得分,其他的选项默认就可以了,这里简单解释一下几个选择的含义。Pearson相关性表示两个值矢量之间的积矩相关性,是定矩数据的缺省相似性测量。转换值是在计算距离之前对变量进行标准化的方法,这里使用Z得分,Z得分表示将值标准化到均值为0且标准差为1的Z得分,但同时注意标准化要指定标准化对象,这里是变量。
在完成以上的设置后,点击确定将会输出结果,上面的为案例处理摘要,下面的为距离分析的近似矩阵。
下面我们结合Excel和SPSS的分析结果来具体分析一下,在Excel的分析结果中,我们发现105系列道具相关性最弱,那么这个品类就需要我们去进一步探究一下。从SPSS的结果来看,105系列道具确实相关性系数较低,其次是103系列道具相关系数也比较低,但是从总体的Excel和SPSS分析结果来看,101与106、102与106、103与105、104与106、107与102相关性很高,这就是我们得出的结论,最后我们来看看这几个类别道具具体指的是什么:
101:突击步枪
102:冲锋枪
103:机枪
104:狙击步枪
105:shouqiang
106:投掷武器
107:近战武器
故而从这里我们再来看一下,大概了解了FPS游戏的玩家作战配置,突击步枪+投掷武器;冲锋枪+投掷武器;机枪+投掷武器;狙击步枪+投掷武器;冲锋枪+近战武器。当然这种配置不是绝对的,还要考虑游戏本身在这方面的设计情况,比如很多游戏主武器是突击步枪,副武器是冲锋枪,这种情况是要结合业务来考虑,而最终我们通过分析得出的结果,也要根据具体的需要进行筛选和调整。
以上是相关性分析的最复杂的一部分,希望解决一部分网友的疑问,这种方法的参考性和实际利用性还需要进一步检验和证明,属于探索内容,请使用者慎重考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01