
小白学数据分析--相关分析在充值与购买失衡分析的应
昨天简单的说过充值记录的分析方法,今天介绍一下使用相关分析,说说充值与购买的数据相关分析。在很多类型的游戏中,我们经常会做累计充值活动,然而并不是所有的累计充值活动都做的很好,而且某些类型的游戏不适合频繁作累计充值活动,究其原因,其中之一就是会造成充值与购买的失衡,通俗的说就是会存在持币待购的情况,我们希望正常或者良性的循环是充值购买为1:1,这点对于平衡消费,稳定消费结构很重要,当然了实际运营中我们也会面临很多的突发因素,比如游戏内容调整,游戏数值调整,版本IB刺激等等。但是如果出现持币待购也就是说充值远远大于购买时,我们就需要警惕和分析原因。
但是我们如何来判定和量化持币待购的情况?这里我们将采用相关分析的方法来解决。所谓相关分析(Correlation Analysis)是考察两个变量的相互变化的关系程度,与回归分析不同的是,相关分析的两个变量地位是平等的,不存在因果关系。相关关系是变量之间保持某种不确定的依存关系,相关分析可以借助散点图或者诸如相关系数来考察变量间的关联程度。
变量的相关关系按照两者的变动分为正相关和负相关,正相关也就是相关系数为正,两个因素同方向变动,一个增大另一个也增大,而负相关就是相关系数为负,两个因素按照反方向变动,一个增大另一个却反而减小。
按照相关的程度来看,相关关系可以分为完全相关、不相关和不完全相关。当一个变量变化完全由另一个变量决定时,这种关系为完全相关;如果彼此互不影响,变量各自独立,就是不相关;而两个变量之间关系介于完全相关和不相关之间就是不完全相关。
关于描述相关系数的方法有很多种,这里不再讲解,一般而言我们比较关注相关分析按照影响因素(变量)如何确定分析方法,对于我们今天讨论的充值购买的相关分析就是双变量相关分析,即通过计算两个变量之间的相关系数,对两个变量之间是否显著相关做出判断。另外还有偏相关分析,当出现多个变量时,直接对两个变量进行相关分析往往不能真实反映二者之间的相关关系,这时就需要用偏相关分析,剔出其他变量的线性影响。最后一种是距离分析,当出现了多个变量而不能每个分析解决时,此时将所有的变量按照一定的标准分类,即聚类分析。
相关分析在Excel和SPSS中均有相关的模块可用于分析,今天说说在Excel中怎么使用相关分析,在Excel中判断相关关系的方法有两种,即散点图和相关关系分析工具。散点图这里就不再累述了,简单说说相关关系分析工具的使用。
首先在Excel中把数据分析模块调用出来,点击开始,选择Excel选项
选择加载项|分析工具库|转到
之后打开如下的对话框,选择分析工具库,点击确定,最后会在数据标签下出现数据分析的加载项。
随后选择数据分析|相关系数,出现相关系数对话框。在输入区域需要输入分析数据区域的单元格引用,且引用数据区域必须是两个或者以上的行或者列的相邻数据区域。这里我们选取某一月的每名玩家的充值总额和该月相应的购买总额。
分组方式是数据区域是按照行或者列排列,单击逐行或者逐列。
标志位于第一行/标志位于第一列,如果输入区域的第一行显示变量名,选中标志位于第一行,列的形式一样。如果输入区域没有变量,无需选择。
之后会输出一个相关分析结果的表格,该表格会把两个变量的相关系数计算出来,根据计算的系数就能够了解充值总额和购买总额的相关系数。相关系数一般会呈现两种结果。
正相关:随着充值总额的增加,购买总额也增加,此时充值和购买的平衡保持较稳(当然这种分析不是绝对的,不要只限于用这一种方法就断言充值购买的平衡性,还要结合其他数据来看待,切忌)
负相关:随着充值的增加,购买反而减少,呈反向变化趋势,此时为充值购买不平衡的情况出现,可以作为一个参考指标。
p.s.做这种相关分析要注意维度的把握,比如是新登玩家、回流玩家等等,可以更加明确的分析和把握客群特点,因为在APA群体中,发生充值购买失衡不一定是整个的APA群体,不断地细分APA客群,可以更好地进行分析。进而当我们找到了充值购买失衡最为严重的APA群体后,在通过聚类分析、RFM分析等更加深刻描述和分析问题。这是一个系列的过程,相关性的分析只是在第一步把充值购买的失衡问题暴露出来,这只是一种手段,但不是唯一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29