京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--充值记录分析
充值记录分析的方法有很多种,维度很多,今天就说说一个比较初级的分析方法,希望对于各位有一定的帮助和指导。
首先来看一下充值记录的格式,一般而言我们取到的数据都是交易格式(什么事交易格式这里不说了,大家应该都了解)

以上为我们看到的交易记录,这样的一份充值交易记录究竟我们能够做一些什么样的研究很分析?下面就简单说一下我的想法和思路,大家来看看。
我们知道在做周报、月报等分析时,经常会使用ARPU指标,一般的方法是:
总充值(总消耗)/充值人数(消耗人数)
然而这样的ARPU计算其实存在一定的问题,因为ARPU的高低容易受到这段时期的版本、充值人数、流失情况、版本IB等很多的因素影响,在每个公司的内部数据分析报告上不会就简单的给出ARPU指标,就胡乱的分析(还是那句话,不懂得业务,就不要数据分析)。今天我们撇开那些影响因素不谈,单从ARPU本身来衡量,根据ARPU的计算公式,ARPU直接受到人数和充值总额的影响,实际上上ARPU的升降受影响比较大的是充值额,当然不是绝对的。因为APA是一个付费金字塔,处于顶端的APA每个人的充值贡献往往是低端群体的基本甚至是几十倍,这些APA的贡献某种意义上是拉高了ARPU,反过来,如果低端APA过多,此时又会拉低ARPU,从这个角度来看我们不能简单的看待报告中的ARPU指标,唯ARPU论,还要参考付费渗透率、流失率、购买力等等很多因素。
而在这些众多考虑的方面之一,就是需要我们把ARPU进一步拆解和细分,这里我们就要用到充值记录的处理和分析,关于购买记录和购买ARPU以后会继续写一下。如刚才上述的充值记录,我们往往取到的充值数据就如同以上的形式,对于这样的交易记录,对于我们而言如果要利用,需要进行一下处理,假如我们取1个月的充值数据,以下为处理以后的数据:

这里说明一下,实际上账户1在一个月充值两次,分别为100和25,处理后的账户1个月总共充值125元,并且有充值活跃的天数为2天(其实这个对于购买活跃度更加有用),之所以要加上这个充值或者购买活跃度,原因在于一般游戏中玩家或选择每月一次性充值就OK,然而当玩家每月充值频繁起来,活跃度提升,很大程度上归结为几点原因:一、消费透支,比如奖券赌博性质的道具;二、大笔购买导致存留不足;三、积攒、收集、合成缺少微量付费道具,补齐型消费;四、交互型消费,公会、帮派、战队、交友等购买赠送需求。
在得到以上格式的充值数据后,我们就可以进行充值数据的分析,其实方法很简单,通过Excel的描述分析或者SPSS的描述性分析,求出充值数据中的中位数、众数、四分位数。之所以要求出这些统计指标,目的在于同ARPU(算术平均数)进行比较,ARPU与中位数、众数的距离和偏差从侧面可以反映出目前的ARPU是否平衡和良性,这是一种考察ARPU的方式,从玩家的充值数据的计算和分析上,来看看玩家充值是否符合正态分布,也可以进行正态性检验或者通过查看偏度和峰度系数。
以上说的是第一部分分析,此外根据充值数据,通过Excel的数据透视表,进行充值数据的汇总,之后通过组合功能,设置步长,进而我们就能具体查看在ARPU之下具体有多少APA,之前在文章中,我们谈论过APA存在一个金子塔的模型,也就是说APA存在低端付费玩家,中端付费玩家,高端付费玩家(笼统的说),通过ARPU的位置和在ARPU之下的具体的APA群体数量来确定究竟在金字塔模型上有多少玩家处于何种阶段和级别。
有一种情况,我们不得不警惕,通过ARPU来看玩家的消费不是非常好的方式,因为通过低端或者高端玩家的拉动,ARPU表现出的水平不一定是整体玩家的真实充值和消费水平,所以要通过数据透视表的步长计算以及描述性统计更全面的衡量的ARPU。当然了,这只是就ARPU本身出发来分析,但是ARPU背后的信息还需要结合其他指标和游戏设计、运营活动等信息来综合分析,说到底还是要先懂的业务,深刻地理解游戏系统、运营活动等方面来进行接下来的数据分析。
P.S.最近在做一些分析是时,发现很多人还是从单一数据指标入手分析问题,这种方式是不可取的,不是说体系不重要,但是就一些问题而言,我们必须要建立一个分析的数据框架,有了框架,分析才能深刻和彻底,就目前的数据分析而言,我们不缺少数据,不缺少数据点,在数据越来越多的情况下,如果建立一套合适的解决问题的数据框架是非常重要的。一方面不要只从一个指标入手,单点分析,只看到大象屁股,没看到整个大象。另一方面,也不能为了有而有,建立一些数据框架,大而空,实际业务问题又不能在这个框架下有效的解决并作出决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16