小白学数据分析--充值记录分析
充值记录分析的方法有很多种,维度很多,今天就说说一个比较初级的分析方法,希望对于各位有一定的帮助和指导。
首先来看一下充值记录的格式,一般而言我们取到的数据都是交易格式(什么事交易格式这里不说了,大家应该都了解)
以上为我们看到的交易记录,这样的一份充值交易记录究竟我们能够做一些什么样的研究很分析?下面就简单说一下我的想法和思路,大家来看看。
我们知道在做周报、月报等分析时,经常会使用ARPU指标,一般的方法是:
总充值(总消耗)/充值人数(消耗人数)
然而这样的ARPU计算其实存在一定的问题,因为ARPU的高低容易受到这段时期的版本、充值人数、流失情况、版本IB等很多的因素影响,在每个公司的内部数据分析报告上不会就简单的给出ARPU指标,就胡乱的分析(还是那句话,不懂得业务,就不要数据分析)。今天我们撇开那些影响因素不谈,单从ARPU本身来衡量,根据ARPU的计算公式,ARPU直接受到人数和充值总额的影响,实际上上ARPU的升降受影响比较大的是充值额,当然不是绝对的。因为APA是一个付费金字塔,处于顶端的APA每个人的充值贡献往往是低端群体的基本甚至是几十倍,这些APA的贡献某种意义上是拉高了ARPU,反过来,如果低端APA过多,此时又会拉低ARPU,从这个角度来看我们不能简单的看待报告中的ARPU指标,唯ARPU论,还要参考付费渗透率、流失率、购买力等等很多因素。
而在这些众多考虑的方面之一,就是需要我们把ARPU进一步拆解和细分,这里我们就要用到充值记录的处理和分析,关于购买记录和购买ARPU以后会继续写一下。如刚才上述的充值记录,我们往往取到的充值数据就如同以上的形式,对于这样的交易记录,对于我们而言如果要利用,需要进行一下处理,假如我们取1个月的充值数据,以下为处理以后的数据:
这里说明一下,实际上账户1在一个月充值两次,分别为100和25,处理后的账户1个月总共充值125元,并且有充值活跃的天数为2天(其实这个对于购买活跃度更加有用),之所以要加上这个充值或者购买活跃度,原因在于一般游戏中玩家或选择每月一次性充值就OK,然而当玩家每月充值频繁起来,活跃度提升,很大程度上归结为几点原因:一、消费透支,比如奖券赌博性质的道具;二、大笔购买导致存留不足;三、积攒、收集、合成缺少微量付费道具,补齐型消费;四、交互型消费,公会、帮派、战队、交友等购买赠送需求。
在得到以上格式的充值数据后,我们就可以进行充值数据的分析,其实方法很简单,通过Excel的描述分析或者SPSS的描述性分析,求出充值数据中的中位数、众数、四分位数。之所以要求出这些统计指标,目的在于同ARPU(算术平均数)进行比较,ARPU与中位数、众数的距离和偏差从侧面可以反映出目前的ARPU是否平衡和良性,这是一种考察ARPU的方式,从玩家的充值数据的计算和分析上,来看看玩家充值是否符合正态分布,也可以进行正态性检验或者通过查看偏度和峰度系数。
以上说的是第一部分分析,此外根据充值数据,通过Excel的数据透视表,进行充值数据的汇总,之后通过组合功能,设置步长,进而我们就能具体查看在ARPU之下具体有多少APA,之前在文章中,我们谈论过APA存在一个金子塔的模型,也就是说APA存在低端付费玩家,中端付费玩家,高端付费玩家(笼统的说),通过ARPU的位置和在ARPU之下的具体的APA群体数量来确定究竟在金字塔模型上有多少玩家处于何种阶段和级别。
有一种情况,我们不得不警惕,通过ARPU来看玩家的消费不是非常好的方式,因为通过低端或者高端玩家的拉动,ARPU表现出的水平不一定是整体玩家的真实充值和消费水平,所以要通过数据透视表的步长计算以及描述性统计更全面的衡量的ARPU。当然了,这只是就ARPU本身出发来分析,但是ARPU背后的信息还需要结合其他指标和游戏设计、运营活动等信息来综合分析,说到底还是要先懂的业务,深刻地理解游戏系统、运营活动等方面来进行接下来的数据分析。
P.S.最近在做一些分析是时,发现很多人还是从单一数据指标入手分析问题,这种方式是不可取的,不是说体系不重要,但是就一些问题而言,我们必须要建立一个分析的数据框架,有了框架,分析才能深刻和彻底,就目前的数据分析而言,我们不缺少数据,不缺少数据点,在数据越来越多的情况下,如果建立一套合适的解决问题的数据框架是非常重要的。一方面不要只从一个指标入手,单点分析,只看到大象屁股,没看到整个大象。另一方面,也不能为了有而有,建立一些数据框架,大而空,实际业务问题又不能在这个框架下有效的解决并作出决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03