
BI建模原则和常见问题
BI建模的质量直接影响数据仓库项目的质量,所以在建模前,要对数据仓库的架构组成、大小以及模型功能有明确的定义。
影响BI数据仓库建模的因素众多,往往会随着项目的具体情况不同而变化。但有些原则是相通的,各种项目的实施过程都需要考虑,而一些常见的、项目人员容易不解的问题也同样需要重视。
BI建模原则
1、 围绕业务情况建模:业务需求是基础,数据仓库的数据组织是面向主题的,而不是面向报表的,是面向业务分析的主题领域的,比如常见的销售分析、合同尾款分析、客户关系分析等等。
2、 保证数据的一致性:要保证数据之间逻辑关系的正确性和完整性,数据仓库要实现对数据的集成与数据的同构性,和数据的相对稳定,为实现应用而进行实时读写操作。
3、 使用调度:数据仓库要有能反映历史变化与及时准确的数据处理能力,所以BI建模增量更新时必须使用调度,即对事实数据表进行增量更新处理。在使用调度前要考虑到实际的数据量,明确数据多久更新一次。数据量大的可以每天,那么数据可以按天抽取,或者像帆软商业智能FineBI那样,采用定时增量更新;变化不大的可以一周或是更久。如果有缓慢变化维度情况,调度时需要考虑到维度表更新情况,在更新事实数据表之前要先更新维度表。
4、 需求与现实的平衡:依据业务需求提供用户可接受BI方案,在进行BI建模时需要不断在用户需求和数据源事实之间进行平衡,不光是设计人员自身平衡,企业业务人员也同样要面对这样的现实。
常见问题
1、 模型的设计如何入手?
BI建模的目的无非是为了提升管理水平,这也是上BI项目的核心意义所在。前期一定要了解清楚业务需求、业务范围等内容,明确企业对商业智能的期望和需要分析哪些主题。协同分析客户目前的管理水平、企业架构和运作流程,管理过程的薄弱点和关键点是什么,来帮助企业人员认识自己的需求。
2、实施忽略确认过程
很多项目人员在确认过企业需求后就觉得可以大刀阔斧地设计实施了,但在实际过程中往往遇到各种对不上的问题。究其原因在前期商讨过程中总会有遗漏,一些人员对业务也并非有深刻的理解,造成后续不断调整,项目周期拖延。所以在建模过程中,一定要不断地确认业务分析模型,数据能否支撑。好的商业智能BI项目实施,通常会充分了解数据抽取对象的业务系统,和业务人员充分沟通,与领导反复确认,避免企业后续的重复工作,加重企业负担。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19