
数据分析需求转型与商业模式重构
现如今各行各业对于数据分析的理解都已经发生了改变,这也使得技术层面和业务层面都出现了一定挑战,大家都希望更好的利用数据,将数据进行变现,因为数据带来的市场机遇是巨大的。
这是我第二次见Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr,他一上来就迫不及待地和我分享了最近发生在他女儿身上的一件趣事。作为社交达人的女儿活跃在各大社交网站,有一天她看到Facebook的财报,不禁产生疑问,为什么提供免费服务还可以赚钱?
Mikael为女儿解释了Facebook是如何利用用户数据赚钱,女儿马上意识到未来在社交网站上上传数据需要更谨慎。这正是消费者越来越意识到数据的价值,这对于企业利用数据将是一个挑战。
Teradata天睿公司营销与业务拓展副总裁Mikael Bisgaard-Bohr
当然数据也可以帮助企业从新定义商业模式,在Teradata Universe峰会德国站,Mikael遇到的一个德国客户谈到,十年以后各个企业的CEO不能再找借口说我不知道这件事情发生了,因为数据可以将现实重现。
市场转型带来的技术与业务突破
在2013年,Teradata将市场分为美洲和国际两大部分,Mikael 负责市场营销及国际市场营销和业务拓展。在他看来虽然在三四年之前美国市场有一定的疲软,但2015年国际业务的各个市场都表现良好,尤其是中国市场增长明显。
Teradata去年财报出现了降幅,这也反映出传统数据仓库市场需求出现变化,数据分析相关需求却正在逐渐增加。Teradata同时也收购了多家公司来扩充技术实力,结合开源技术来提供更多更强大的数据分析服务,来应对市场的转型。
Mikael强调说,他们看重长期的发展,Teradata最重要的行业是金融、电信、零售三个行业,其中电信行业在过去一段时间基本已经达到饱和,但零售业由于中国地理分布的原因,在中国还有很多可以拓展的地方。
在三大行业之外,Teradata同样也在做一些新的拓展,尤其是新的增长领域,这其中很多是B2C的企业,因为他们会产生大量丰富的数据。另外,“中国制造2025”战略强调制造业的数字化转型,之前制造业客户更多是在营销和财务系统上进行投资,而现在核心生产系统的数据分析需求正是Teradata拓展的新领域。
在技术上Teradata也在改变策略,强调包容不同技术的分析生态系统,来帮助客户解决问题。同时,在技术上也会坚持创新,实现业务模式的不断突破。
数据将重新定义企业
现如今各行各业对于数据分析的理解都已经发生了改变,这也使得技术层面和业务层面都出现了一定挑战,大家都希望更好的利用数据,将数据进行变现,因为数据带来的市场机遇是巨大的。
以银行为例,五年前他们做的还是关系型数据库或者列式数据库,当数据不断的累积后,他们在想利用这些数据能解决什么业务问题?银行客户们总结了200多个可以用数据解决的新业务问题,这其中涉及了移动数据、网络数据、甚至各种各样交互产生的数据,并且查阅这些数据进行分析的人也在发生变化。
数据在电信行业也有三个趋势,第一,全渠道地整合线上线下信息,在销售前对客户有一个全面的了解;第二,根据客户相关数据来制定促销价格,因为定价将直接影响他们的损益;第三,通过数据了解供应链,客户在什么时间什么地点需要什么货品,帮助零售商控制成本。
有一个制造业客户曾向Mikael抱怨,流水线组装工人投诉没有时间上卫生间,但管理层却说不存在这个问题。最后他们通过给每个流水线上的工人配发一个智能穿戴设备(Fitbit)来收集工人信息解决投诉问题。
通过这些数据,他们还能发现流水线上工人的整个工作流程设计是否合理。例如,他们发现重型工业组装操作需要单手举起非常重的部件,然后又要弯下腰拿工具进行操作,所以这里就需要进行工作流程再造,而这都说明数据能更快速地帮助他们解决了多种问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04