京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析未来汽车市场发展商机
大家现在言必称大数据,但拿出来展示的不过是一个个网站的单平台数据。我的一个总体感觉就是,互联网大数据,看上去很美,但实际上更像一个野蛮生长的江湖,一个个遥不可及的孤岛。尼尔森眼中的大数据并不是单平台上的一些浏览和用户数据,而是要体现所有消费者在所有平台上的全量数据。大数据的成功应用取决于几个必要条件,第一要共享共赢,数据实现共享,才能发挥它的最大效益。第二,大数据的应用必须要有科学的建模。第三,必须要有丰富的消费者洞察的经验和能力,才能做到把这些大数据为其所用。
基于尼尔森的跨平台大数据,我们把整个中国的全部人口分成了28个细分人群。这当中我们发现有六类用户会是在新能源车和智能汽车上成为第一个吃螃蟹的人。他们虽然处在不同的生活阶段,有的单身,有的成家,有的事业有成,收入层次也不一样,但却对新技术、新风格和新形象有着强烈的共性追求。这种特点,只有运用海量数据细分的和画像才能发现。想知道他们在哪儿吗,运用地理位置数据库和人群匹配技术,不但可以发现他们集中在哪些城市,而且可以在地图上进行定位。例如,要找中年以上的金领格调型和管理精英型吗,来北京吧,这里最多;而在广州和成都,更为年轻的白领中坚与体面理性族的比例却更高。
造什么样的车子?
电动汽车市场的空白机会在哪里?我觉得在当前销量主力的A00和A0级车之外,补贴前零售价格15万到20万元的A级车,在B级轿车的25万到30万元的中高端市场,还有高端的50万到60万元的市场,还是有很大的空白的机会,未来的新品开发要充分关注一下这三个细分市场。在Uber,有一条不成文的“十倍法则”,你做的事要比别人好十倍;如果只比别人好一点儿,就不要浪费生命去做。在尼尔森,也有一个”突破性创新“法则,那就是符合“相关、持久和独特”三个特性,只要在消费者眼中满足这三个特性,一款新品就能在市场上脱颖而出。“相关”,就是要找到适合消费者购买力的价位和他们出行需求的车身形式;“持久”,就是能够不断地去迭代车身设计,快速迭代车上的智能交互系统,常用常新;“独特”,就是让自己的设计有排他性、独特性。
如何打造下一代汽车?
创新在产品发展的各个阶段都有可能失败。尼尔森在全球曾经帮助各个企业测试和评估了210,000个新开发的产品概念,而追踪他们的上市表现,发现只有2%的产品获得了长久的成功。我认为,成功的创新一定要从消费者的购买动机和他的用车场景出发。我们曾经为一款车载导航系统做过测试,通过电商网站流量数据的分析,发现消费者真正关心的是它的电子地图精准度、实时路况更新和价格,而不是厂家自以为很棒的语音与行车记录功能。
大数据能不能帮我们在设计上也做一些未来感的新车?用AlphaGo式的机器学习技术来做并不难。如果有9种外观设计,13种仪表盘的设计,30种的座椅布置加上前大灯,那就是10万种以上的设计组合。亲,你要找多少人,用多少双眼睛才能从里面挑出我们大家都喜欢的TOP3的造型?而运用大数据筛选和机器学习的方法,消费者在网络上就像玩电脑游戏一样,只需对不同设计元素的随机组合一对一的点击选择,可以让在短短几个小时之内,把十几万种、几十万种的造型的可能性,筛选聚焦成就是三个最优概念。这种智能设计优化器的软件和方法,可不是科学幻想哦,尼尔森已经用它为几百个品牌提供了新品设计,让消费者不动声色地告诉你什么是他脑海中的“前卫”、“梦幻”与“极致”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08