
大数据分析未来汽车市场发展商机
大家现在言必称大数据,但拿出来展示的不过是一个个网站的单平台数据。我的一个总体感觉就是,互联网大数据,看上去很美,但实际上更像一个野蛮生长的江湖,一个个遥不可及的孤岛。尼尔森眼中的大数据并不是单平台上的一些浏览和用户数据,而是要体现所有消费者在所有平台上的全量数据。大数据的成功应用取决于几个必要条件,第一要共享共赢,数据实现共享,才能发挥它的最大效益。第二,大数据的应用必须要有科学的建模。第三,必须要有丰富的消费者洞察的经验和能力,才能做到把这些大数据为其所用。
基于尼尔森的跨平台大数据,我们把整个中国的全部人口分成了28个细分人群。这当中我们发现有六类用户会是在新能源车和智能汽车上成为第一个吃螃蟹的人。他们虽然处在不同的生活阶段,有的单身,有的成家,有的事业有成,收入层次也不一样,但却对新技术、新风格和新形象有着强烈的共性追求。这种特点,只有运用海量数据细分的和画像才能发现。想知道他们在哪儿吗,运用地理位置数据库和人群匹配技术,不但可以发现他们集中在哪些城市,而且可以在地图上进行定位。例如,要找中年以上的金领格调型和管理精英型吗,来北京吧,这里最多;而在广州和成都,更为年轻的白领中坚与体面理性族的比例却更高。
造什么样的车子?
电动汽车市场的空白机会在哪里?我觉得在当前销量主力的A00和A0级车之外,补贴前零售价格15万到20万元的A级车,在B级轿车的25万到30万元的中高端市场,还有高端的50万到60万元的市场,还是有很大的空白的机会,未来的新品开发要充分关注一下这三个细分市场。在Uber,有一条不成文的“十倍法则”,你做的事要比别人好十倍;如果只比别人好一点儿,就不要浪费生命去做。在尼尔森,也有一个”突破性创新“法则,那就是符合“相关、持久和独特”三个特性,只要在消费者眼中满足这三个特性,一款新品就能在市场上脱颖而出。“相关”,就是要找到适合消费者购买力的价位和他们出行需求的车身形式;“持久”,就是能够不断地去迭代车身设计,快速迭代车上的智能交互系统,常用常新;“独特”,就是让自己的设计有排他性、独特性。
如何打造下一代汽车?
创新在产品发展的各个阶段都有可能失败。尼尔森在全球曾经帮助各个企业测试和评估了210,000个新开发的产品概念,而追踪他们的上市表现,发现只有2%的产品获得了长久的成功。我认为,成功的创新一定要从消费者的购买动机和他的用车场景出发。我们曾经为一款车载导航系统做过测试,通过电商网站流量数据的分析,发现消费者真正关心的是它的电子地图精准度、实时路况更新和价格,而不是厂家自以为很棒的语音与行车记录功能。
大数据能不能帮我们在设计上也做一些未来感的新车?用AlphaGo式的机器学习技术来做并不难。如果有9种外观设计,13种仪表盘的设计,30种的座椅布置加上前大灯,那就是10万种以上的设计组合。亲,你要找多少人,用多少双眼睛才能从里面挑出我们大家都喜欢的TOP3的造型?而运用大数据筛选和机器学习的方法,消费者在网络上就像玩电脑游戏一样,只需对不同设计元素的随机组合一对一的点击选择,可以让在短短几个小时之内,把十几万种、几十万种的造型的可能性,筛选聚焦成就是三个最优概念。这种智能设计优化器的软件和方法,可不是科学幻想哦,尼尔森已经用它为几百个品牌提供了新品设计,让消费者不动声色地告诉你什么是他脑海中的“前卫”、“梦幻”与“极致”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22