京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 理论知识
决策树分类算法的一般流程如下:一开始,所有的实例均位于根节点,所有参数的取值均离散化;根据启发规则选择一个参数,根据参数取值的不同对实例集进行分割;对分割后得到的节点进行同样的启发式参数选择分割过程,如此往复,直到(a)分割得到的实例集合属于同一类;(b)参数用完,以子集中绝大多数的实例类别作为该叶节点的类别。
基于熵的概念,我们可以得到参数选择的第一个规则:信息增益(Info Gain).信息增益的定义是分裂前的节点熵减去分裂后子节点熵的加权和,即不纯度的减少量,也就是纯度的增加量。参数选择的规则是:选择使信息增益最大的参数分割该节点。信息增益计算的算例如下图。
信息增益存在的问题时:总是倾向于选择包含多取值的参数,因为参数的取值越多,其分割后的子节点纯度可能越高。为了避免这个问题,我们引入了增益比例(Gain Ratio)的选择指标,其定义如下图所示。
增益比例存在的问题是:倾向于选择分割不均匀的分裂方法,举例而言,即一个拆分若分为两个节点,一个节点特别多的实例,一个节点特别少的实例,那么这种拆分有利于被选择。
为了克服信息增益和增益比例各自的问题,标准的解决方案如下:首先利用信息增益概念,计算每一个参数分割的信息增益,获得平均信息增益;选出信息增益大于平均值的所有参数集合,对该集合计算增益比例,选择其中增益比例最大的参数进行决策树分裂。
上面介绍的是基于熵概念的参数选择规则,另一种流行的规则称为基尼指数(Gini Index),其定义如下图。基尼系数在节点类别分布均匀时取最大值1-1/n,在只包含一个类别时取最小值0. 所以与熵类似,也是一个描述不纯度的指标。
基于基尼系数的规则是:选择不纯度减少量(Reduction in impurity)最大的参数。不纯度减少量是分割前的Gini index减去分割后的Gini index。基尼系数的特点与信息增益的特点类似。
过度拟合问题(Overfitting)
过度拟合问题是对训练数据完全拟合的决策树对新数据的预测能力较低。为了解决这个问题,有两种解决方法。第一种方法是前剪枝(prepruning),即事先设定一个分裂阈值,若分裂得到的信息增益不大于这个阈值,则停止分裂。第二种方法是后剪枝(postpruning),首先生成与训练集完全拟合的决策树,然后自下而上地逐层剪枝,如果一个节点的子节点被删除后,决策树的准确度没有降低,那么就将该节点设置为叶节点(基于的原则是Occam剪刀:具有相似效果的两个模型选择较简单的那个)。
Scalable决策树分类算法
这里介绍两个算法,一个是RainForest,其主要的贡献是引入了一个称为AVC的数据结构,其示意图如下。主要的作用是加速参数选择过程的计算。
另一个算法称为BOAT,其采用了称为bootstrap的统计技术对数据集进行分割,在分割的子数据集上分别构造决策树,再基于这些决策树构造一个新的决策树,文章证明这棵新树与基于全局数据集构造的决策树非常相近。这种方法的主要优势在于支持增量更新。
rpart(formula, data, weight s, subset, na. action = na. rpart, method, model= FALSE, x= FALSE,y= TRUE, parms, control, cost, . . . )
fomula 回归方程形式: 例如 y~ x 1+ x2+ x3。
data 数据: 包含前面方程中变量的数据框( data frame) 。
na.action 缺失数据的处理办法: 默认办法是删除因变量缺失的观测而保留自变量缺失的观测。
method 根据树末端的数据类型选择相应变量分割方法,本参数有四种取值: 连续型>anova; 离散型>class; 计数型( 泊松过程)>poisson; 生存分析型>exp。程序会根据因变量的类型自动选择方法, 但一般情况下最好还是指明本参数, 以便让程序清楚做哪一种树模型。
parms 用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法。anova没有参数;poisson分割有一个参数,先验分布变异系数的比率,默认为1;生存分布的参数和poisson一致;对离散型,可以设置先验分布的分布的概率(prior),损失矩阵(loss),分类纯度(split);priors必须为正值且和为1,loss必须对角为0且非对角为正数,split可以是gini(基尼系数)或者information(信息增益);
control 控制每个节点上的最小样本量、交叉验证的次数、复杂性参量: 即cp: complexity pamemeter, 这个参数意味着对每一步拆分, 模型的拟合优度必须提高的程度, 等等。
prune(tree, cp, . . . )
tree 一个回归树对象, 常是rpart()的结果对象。
cp 复杂性参量, 指定剪枝采用的阈值。
rpart包自带数据集stagec,包含了146位患了stage c前列腺(prostate)癌的病人。变量介绍如下:
pgtime: 出现症状或复发时间,单位年;
pgstat:状态变量,1为复发,0为删减;
age:年龄;
eet:是否内分泌治疗,1为no,2为yes;
g2:g2阶段肿瘤细胞百分比;
grade:肿瘤等级,farrow体系;
gleason:肿瘤等级,gleason体系;
ploidy:肿瘤的倍体状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16