京公网安备 11010802034615号
经营许可证编号:京B2-20210330
车联网与车有关的大数据
随着互联网的不断发展,大数据正在成为一股热潮,且业界对大数据的讨论已达到一个前所未有的高峰。车联网作为移动互联网大背景下诞生的一个产物,不管是车辆的接入、服务内容的选择还是服务的精准性,都离不开大数据。
车辆上传的每一组数据都带有位置信息和时间,并且很容易形成海量数据。一方面,如果说大数据的特征是完整和混杂,而车联网与车有关的大数据特征是完整加精准。如某些与车辆本身有关的数据,都有明确的一个ID,根据这个ID可以关联到相应的车主信息,并且这些信息还是精准的。
另一方面,我们可以看到车联网与驾驶人的消费习惯、兴趣爱好等大数据特征是完整和部分精确。因此,研究车联网的大数据更有意义。
大数据的定义和特征
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
我们从权威的定义可以看到,大数据的特征有四点,分别为:数据体量巨大。从TB级别,跃升到PB级别;数据类型繁多。提到的网络日志、视频、图片、地理位置信息等等。,价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。处理速度快。1秒定律。
车联网的大数据在预测方面可以发挥到极致。如,预测交通堵塞的地段,实时交通信息,主动安全,公交的排班。驾驶者驾驶行为分析。
大数据的核心在于预测,这在车联网行业非常有用,例如,对于交通流量的预测,就非常需要大数据。对于交通流量,目前我们的仿真系统更加重视交通流量大,拥堵的原因,而大数据时代,不再在乎因果关系,而重视相关性,也就是不去分析产生拥堵的原因,但确实某个时段某个路段会发生拥堵。也可以根据车联网的大数据对车友的兴趣进行分析。
大数据在商用车领域的应用
大数据在商用车领域已经有相当多的应用,如公交领域的运营排班管理、出租车领域的浮动车数据,物流行业的大物流。
如何解决公交企业面临的三大问题:运力配备最少、车辆运行距离最短、驾驶员作业时间最少?如何分析各时间段、各站点的客流分布情况呢?如何实现运营的安全智能化、运营排班的智能化?在公交行业,以上问题普遍存在,
通过车联网的大数据,可以解决公交行业所面临的这些问题。根据各个时间段,各站点的客流量大小,线路配备的运营车辆数、线路配备驾驶人员、线路长度、车辆运行速度等大数据,可确定一条线路各个时间段的配车数及发车间隔,从而解决运力配备最少、车辆运行距离最短、驾驶员作业时间最少三大问题。
根据客流量、节假日、气候、节气、自然灾害、道路、车况事故、历史同期数据、售票方式、居民小区建设等条件建立计划模型,从而用最快的速度对这些影响运营计划的因素做出反映。比如增加线路,增加车辆,增加司机,有效地制定公交运营计划。同时可对于运营排班精准管理,可通过大数据可以自动排班,对行车作业计划进行优化,并快速地对运行线路进行调整和优化。
自从菜鸟网络公司出现以后,大物流的概念终于被业界提及。什么叫大物流呢?是指企业的自有物流系统(由车队、仓库、人员等组成),和第三方物流企业的配送信息与资源进行共享,从而能充分地利用各方面资源,减少物流总支出、降低运营成本。
目前物流行业随着业务的扩大,车辆数日益增多,而且型号众多。很多企业还是采用手工方式进行车辆管理,工作量大,对车辆运营数据统计分析比较困难,统计结果相当滞后,不利于公司的决策管理;同时在车辆行驶过程中没有进行全程的监控,对司乘人员的违法违规行为无法进行及时预警,也无法对司乘人员的求助及时进行反应。
另一方面,在我国现行的物流运输方式中无论是自营物流,合营物流还是第三方物流,隐性成本占据了很重要的地位,这些隐性成本在物流运输过程中主要包括以下几个方面:返程或起程空驶:空车无货载行驶,这些都是不合理运输的方式。
如何改善物流企业在管理上较为落后的现状,达到货主“高服务质量、严格的准时率、极小的货损率、较低的物流成本”的要求?
如何解决物流行业运行信息反馈滞后、运营高成本、货运车辆的高空驶率、司机作弊给货物和车辆的安全带来的极大隐患?
如何快速、高效的为用户提供可靠的物流服务?
如何最大程度的利用运力资源提高整体业务运营效率?
这些是目前物流行业迫在眉睫的问题。
对以上问题,车联网技术正好可以解决车主迫在眉睫的问题,通过透明化的运输过程管理,合理调度车辆,根据车辆行驶的大数据,对车辆行驶的线路畅通情况进行预测,规划出一条安全畅通的行驶路线,减少由于交通原因而引发的在途等待时间。
通过车辆运行的大数据,可以快速地分析出相同路线的油耗情况,事故多发路段的提前预警,精确分析计算车辆的行程,提高了企业的信息化水平,随时了解到货物的运行状态信息及货物运达目的地的整个过程,确保了运输过程的透明化管理,使企业的运行管理智能化、服务准时性,提高可预见性。
同时,通过车辆运行的大数据,可获取高速、国道、省道的实时路况,同时对司机的驾车规律的分析,为加油站、维修站、服务站的选址提供了参考数据。
另一方面,物流的成本有很大一部分属于仓储成本。通过车联网技术,对海量的数据进行分析计算,经过合理地调度,降低车辆的空驶率,把移动中的每辆货车可以作为一个流动的仓储空间,提高了仓储空间的周转率,从而帮助企业降低仓储成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01