京公网安备 11010802034615号
经营许可证编号:京B2-20210330
车联网与车有关的大数据
随着互联网的不断发展,大数据正在成为一股热潮,且业界对大数据的讨论已达到一个前所未有的高峰。车联网作为移动互联网大背景下诞生的一个产物,不管是车辆的接入、服务内容的选择还是服务的精准性,都离不开大数据。
车辆上传的每一组数据都带有位置信息和时间,并且很容易形成海量数据。一方面,如果说大数据的特征是完整和混杂,而车联网与车有关的大数据特征是完整加精准。如某些与车辆本身有关的数据,都有明确的一个ID,根据这个ID可以关联到相应的车主信息,并且这些信息还是精准的。
另一方面,我们可以看到车联网与驾驶人的消费习惯、兴趣爱好等大数据特征是完整和部分精确。因此,研究车联网的大数据更有意义。
大数据的定义和特征
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
我们从权威的定义可以看到,大数据的特征有四点,分别为:数据体量巨大。从TB级别,跃升到PB级别;数据类型繁多。提到的网络日志、视频、图片、地理位置信息等等。,价值密度低,商业价值高。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。处理速度快。1秒定律。
车联网的大数据在预测方面可以发挥到极致。如,预测交通堵塞的地段,实时交通信息,主动安全,公交的排班。驾驶者驾驶行为分析。
大数据的核心在于预测,这在车联网行业非常有用,例如,对于交通流量的预测,就非常需要大数据。对于交通流量,目前我们的仿真系统更加重视交通流量大,拥堵的原因,而大数据时代,不再在乎因果关系,而重视相关性,也就是不去分析产生拥堵的原因,但确实某个时段某个路段会发生拥堵。也可以根据车联网的大数据对车友的兴趣进行分析。
大数据在商用车领域的应用
大数据在商用车领域已经有相当多的应用,如公交领域的运营排班管理、出租车领域的浮动车数据,物流行业的大物流。
如何解决公交企业面临的三大问题:运力配备最少、车辆运行距离最短、驾驶员作业时间最少?如何分析各时间段、各站点的客流分布情况呢?如何实现运营的安全智能化、运营排班的智能化?在公交行业,以上问题普遍存在,
通过车联网的大数据,可以解决公交行业所面临的这些问题。根据各个时间段,各站点的客流量大小,线路配备的运营车辆数、线路配备驾驶人员、线路长度、车辆运行速度等大数据,可确定一条线路各个时间段的配车数及发车间隔,从而解决运力配备最少、车辆运行距离最短、驾驶员作业时间最少三大问题。
根据客流量、节假日、气候、节气、自然灾害、道路、车况事故、历史同期数据、售票方式、居民小区建设等条件建立计划模型,从而用最快的速度对这些影响运营计划的因素做出反映。比如增加线路,增加车辆,增加司机,有效地制定公交运营计划。同时可对于运营排班精准管理,可通过大数据可以自动排班,对行车作业计划进行优化,并快速地对运行线路进行调整和优化。
自从菜鸟网络公司出现以后,大物流的概念终于被业界提及。什么叫大物流呢?是指企业的自有物流系统(由车队、仓库、人员等组成),和第三方物流企业的配送信息与资源进行共享,从而能充分地利用各方面资源,减少物流总支出、降低运营成本。
目前物流行业随着业务的扩大,车辆数日益增多,而且型号众多。很多企业还是采用手工方式进行车辆管理,工作量大,对车辆运营数据统计分析比较困难,统计结果相当滞后,不利于公司的决策管理;同时在车辆行驶过程中没有进行全程的监控,对司乘人员的违法违规行为无法进行及时预警,也无法对司乘人员的求助及时进行反应。
另一方面,在我国现行的物流运输方式中无论是自营物流,合营物流还是第三方物流,隐性成本占据了很重要的地位,这些隐性成本在物流运输过程中主要包括以下几个方面:返程或起程空驶:空车无货载行驶,这些都是不合理运输的方式。
如何改善物流企业在管理上较为落后的现状,达到货主“高服务质量、严格的准时率、极小的货损率、较低的物流成本”的要求?
如何解决物流行业运行信息反馈滞后、运营高成本、货运车辆的高空驶率、司机作弊给货物和车辆的安全带来的极大隐患?
如何快速、高效的为用户提供可靠的物流服务?
如何最大程度的利用运力资源提高整体业务运营效率?
这些是目前物流行业迫在眉睫的问题。
对以上问题,车联网技术正好可以解决车主迫在眉睫的问题,通过透明化的运输过程管理,合理调度车辆,根据车辆行驶的大数据,对车辆行驶的线路畅通情况进行预测,规划出一条安全畅通的行驶路线,减少由于交通原因而引发的在途等待时间。
通过车辆运行的大数据,可以快速地分析出相同路线的油耗情况,事故多发路段的提前预警,精确分析计算车辆的行程,提高了企业的信息化水平,随时了解到货物的运行状态信息及货物运达目的地的整个过程,确保了运输过程的透明化管理,使企业的运行管理智能化、服务准时性,提高可预见性。
同时,通过车辆运行的大数据,可获取高速、国道、省道的实时路况,同时对司机的驾车规律的分析,为加油站、维修站、服务站的选址提供了参考数据。
另一方面,物流的成本有很大一部分属于仓储成本。通过车联网技术,对海量的数据进行分析计算,经过合理地调度,降低车辆的空驶率,把移动中的每辆货车可以作为一个流动的仓储空间,提高了仓储空间的周转率,从而帮助企业降低仓储成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22