京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中美企业在数据分析上的最大差异:增长黑客的实践
一、烧钱≠增长,数据驱动是一种能力
在过去10年,中国互联网发展速度非常快,以前是流量驱动的互联网经济。随着人力成本不断攀升,竞争不断加剧,完全靠流量、预算、烧钱来获取客户和市场,已经不可持续了。如果你获取客户的成本高、速度慢且代价大,导致商业价值不能涵盖成本,最终是无法盈利和变现的。
同样获取一个购买客户,在中国可能是美国 5 倍的成本。在中国任何垂直领域都不是一个真空的领域,总会存在跟你同样估值或融资额差不多的竞争对手。如果你花钱效率比别人高,那就很容易出类拔萃,甚至把竞争对手至于死地。而高效花钱的前提,就是要有数据支持,依照数据分析去花钱。
所以只有把效率提升,用相对快的速度,更低的成本,来帮助一个企业获得增长,才是一个公司的核心竞争力之一。
获取增长里的第一步就是做好产品,让用户能够停留在你的APP、网站和服务里。以前流量为王的时代,就像一个漏水的桶,因为进来的水量很大,哪怕它在猛烈地漏水,你的桶慢慢也能灌满。但今天你进来的水越来越少,漏水的速度干不上进水的速度,这个企业就不可能有任何实质性的增长。
所以我们会先帮助企业把产品做到非常高黏度,用户体验非常好、愿意天天来用的产品,就是不漏水的一只桶。然后再帮助企业有效率地优化各种渠道,把新的用户导进来,这样才能获得一种爆发式的增长。
二、中美企业的四大差异
实际上这套理论,在美国已经应用了多年,这也是我们回到中国后,看到的一个核心的区别。除此之外,还有四个非常大的差异在中国和美国整个企业的市场里:
1.是否有数据驱动意识的差异
中国为数很多的企业,还没有意识到数据驱动能为企业带来的巨大价值,或者说只有少数超大规模的公司意识到了这一点。大部分中国的企业,没有意识到数据的价值,使得创始人的决策、商业知觉远远重于数据驱动,这是我的第一个印象。
2.是否进行数据分析实践的差异
在美国,数据分析不管是产品还是方法论,已经很多年了。中国很多企业发展比较快,发展时间比较短,在实用操作能力上和美国有一定差异。这种高级数据分析的能力,基本只集中在几个领头的互联网或者大型企业里,其中互联网公司更具备这种能力,而大部分企业不具备这种操作经验和能力。
3.是否用数据做决策的差异
我们发现,在中国企业内用数据做决策的人,相对美国企业内部来说,比例比较低。像以前我工作过的LinkedIn里,不能说100%,但接近80-90% 的人,每天每周都在用数据做决策和优化。在国内,通过我们对客户的了解,包括对很多付费客户的了解,他们内部用这种决策的人相对来说很少。
4.是否用工具代替人力的差异
美国已经迭代到不是靠人力解决运营效率问题的时代,他们已经完全进入工具化、产品化、规模化时代。在中国很多企业里,还停留在准备大量雇佣人,大量雇佣高级的数据工程师、分析师,甚至建造整个数据这条体系的阶段,和美国之间的差异还是蛮大的。
这四点差异也决定了我们今天在中国做产品的形态:
第一:企业不太习惯用数据分析工具,觉得没有价值。
第二:数据分析实践没有什么太大的规模,只在一些核心的互联网公司里。
第三:内部人员使用数据分析工具的经验不够。
第四:数据分析工具化程度不足。
三、增长黑客的落地和实现
我相信大家都听说过增长黑客,增长黑客的核心概念,实际上在美国5年前就被提出来了,增长黑客核心概念的应用在15年前就开始了,而且是千变万化的。一句话概括增长黑客的核心概念就是:如何用数据来驱动你的产品迭代,用低成本的方式迅速获得增长。
我们想做增长黑客这个核心理论上的践行者和推动者,因为这套增长框架,是相对普世的,尤其是中国的创业者更加需要。中国大数据生态是技术先行于理论体系的,而美国是理论体系稍微先行于技术。比如增长的这套框架,不是一套产品实践的框架,而是一套商业管理方法论的框架,有了这套框架以后,用各种产品和工具来补足,就变得可执行了。
在中国大数据已经火爆了三四年,很多企业却还没有找到落地和变现的方法。实际上方法有很多,我们希望通过我们的产品,来帮助更多的企业落地这些方法论。增长这套方法论,已经被很多企业证明是有价值的,包括 LinkedIn、facebook、推特、airbnb都在实践,从企业建立半年后就可以开始应用了。这套方法论在国内有很大的需求,结合企业内部的运营,以及我们的工具一起,才能为企业产生价值。
我们还想通过我们的产品和践行,纠正一个误区。对很多中国互联网企业来说,他们认为只要接入了你的工具,立刻就能看到效率。实际上并不是这样,必须要把数据化运营这套方法论,结合到每一天的运营里去,同时很熟练地使用数据分析的工具。这是一个不断循环、不断提升的过程。我们在 LinkedIn 不是通过一个项目就带来了50% 的增长,而是很多个小的项目,不断演化、迭代,最后产生几何倍数的增长。
四、可以复制的 50%的增长
虽然说以前我是在LinkedIn内部数据科学团队里负责变现,但它整个体系的方法论,实际上是把整个美国企业化运营和管理最精华部分抽象出来,变成一种可复制、可学习、可扩展的能力,这种能力我很强烈地感受到中国企业是需要的。
为什么?其实很简单,从去年开始,我们开始给客户分享一些案例,他们都非常感兴趣,而且听完以后就立刻实践。我记得当时有一个客户看到我们GrowingIO,用自己的产品优化注册流的过程,我们一共花了7天的时间,把注册转化率提高了30%。这个客户当时还不是我们客户,只能说是潜在用户,他使用了我们的产品,同时几乎是完全照搬了我们优化自己网站的过程,就获得了 50% 的增长。当时给我们客户运营部门发了一个微信:照猫画虎做了一次,发现有很大的提升。
所以这种方法论加工具,才会为更多企业带来价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08