
深入理解SQL大逻辑
1、只要结果不问过程
当我们写出一条SQL语句后,SQL语句是到数据库中去执行的,具体怎么理解和执行SQL是数据库的事,我们关心的事儿就是如何写好SQL语句,别让数据库对我们的SQL产生误解,造成SQL无法执行或者执行错误就好了。
有句古话,叫做“但行好事,莫问前程”,意思是自身要多做义举做好当下,而不要去牵挂往后的发展,这句话套用在SQL上就是“但行好事,莫问过程”,SQL只管告诉数据库,我要的数儿是什么,而不用管数据库是用什么方法把数据给你一行行提取出来的。
从个人经验来看,对与一个以前从未有过编写计算机程序的读者来说,学习SQL反而更加容易一些。这是因为SQL是一种非过程化编程语言。所谓的”非过程化”,是指不要求我们给出SQL查询的执行过程,只需要用户定义出执行后数据的结果,具体的执行过程则由执行该语言的数据库来实现。
如果你对上述叙述感到费解,那么恭喜你,你可能不会遇到以前因为学习过某种计算机编程语言的既有知识带给你学习SQL的困恼。
2. SQL的可视化理解
我们经常看到别人编写的很长的一段SQL语句,分析该语句的执行目的对于SQL初学者往往很困难。在这一节里,我们将结合一个非常具体的案例帮助大家理解SQL语句的执行顺序。
假设在数据库(或者Excel)里有以下两个表格,两个表格分别命名”左表”和”右表”。这两个表格是企业培训系统数据局中常见的数据结构,左表是为企业每个员工设置的他所要参加的培训类别,一个员工可以被指定多个培训类别(或者叫做”培训科目群组”),而每个培训类别包含多个培训项目,具体的培训类别和培训项目对照放在右表中。请仔细了解并弄懂以下两个表格之间的关系,因为,后面的解说全部参照这两个表格中的数据。
现在,结合这两个表格,我们想得到如下一个综合的表格:通过这个综合表格,可以知道每一个员工被指派的”所有具体的培训项目”。我们知道,在这个案例中,即使不用SQL,我们也能以左右两个表格中共有的”培训类别”字段作为关联获得这个结果。
假设我们对SQL还不是很熟悉,还不具备手动书写SQL的能力,请教了一位专家,他帮我们写出的SQL语句如下:
下面的问题是,怎么理解这个SQL语句呢?我们已经知道最基础的SQL语句是由SELECT…FROM…WHERE三段儿组成的,这三段儿的执行顺序如下图所示:
在最基础的SQL语句中,最先执行的是FROM,FROM关键字后面通常是SQL语句所涉及的所有表格名称,在这里涉及两个表格:[左表],[右表] 。
当该SQL语句发送到数据库时,FROM代码段中的两个表格会做一个交叉对接的操作,也就是:用左表的每一行记录和右表的每一行记录对接,形成一行新的记录,执行过程如下图。
FROM代码段的执行结果是在数据库内存中形成下面一个中间结果表格(我们在界面上是看不到的)。
执行完FROM代码段后,第二步执行的SQL语句段儿是WHERE,在案例中的SQL语句中WHERE语句段中的内容是:WHERE[左表].[培训类别]=[右表].[培训类别]
该语句段的作用相当于对FROM代码段的结果执行了一个”筛选”操作。筛选条件是:[左表].[培训类别]=[右表].[培训类别],筛选结果如下:
当整个SQL语句的FROM,WHERE代码段执行完毕后,最后执行的是SELECT代码段,SELECT代码段中的内容是:SELECT [工号],[左表].[培训类别],[培训项目] ,该代码段中的内容很好理解,就是把前面两步执行结果中的特定的列提取出来。我们还知道,如果想提取所有的列,可以把SELECT代码段改写成:SELECT *
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22