
案例分享,数据型人才短缺的应急三法
大数据的市场在蓬勃发展,随之演变而来的是狼多肉少的混战……寻寻觅觅,觅觅寻寻只为找到喜欢深耕数据的内个他……
IDC预测,到2018年,仅在美国就有181000个深度数据分析师的角色空缺,而这一空缺将是与数据管理相关职位空缺的五倍。据国内大数据权威专家估算,5年内,大数据人才缺口也将高达130万左右,然而,市场却没有足够多合格的申请者来填补这些职位空缺。
有人说了:“招聘、招聘、再招聘!”
难道你想把时间用在无尽的打电话中?
难道你想每天在某些科技大楼门前玩堵人?
还是说你想等着自动送上门来的数据大师?
我觉得,很难!
Gartner表示,大数据的需求将在全球范围内创造440万个就业机会,但却只有三分之一的岗位能够招到合适的人才。而这三分之一的岗位想必也是Oracle、亚马逊的囊中之物。据调查发现,近九成的大数据专业人员具有诸如统计学,应用数学,运筹学或经济学等相关学科硕士以上学历,而这些高学历的人才早已注定将驻扎在多金多福利多晋升空间的高大上企业之中,这对于其他企业而言,实属无奈, 如果你的企业无法招聘到具备相关高学历背景的大数据专家的话,该怎么办呢?
或许你可以换个角度,也许会有意外的收获!
不用去挖墙脚,只要你有时间。
自己培养数据人才,这可不是一个段子!分享几个国外案例,也许可以帮到你!
企业往往认为他们需要的是一个具有先进数据科学或数学博士学位的专业人士,但往往都不容易找到,所以一切只是空谈,与其等待,不如找一个真正熟悉您企业业务的人员代替,教给员工进行数据处理和统计,或找到具备编程背景学位的人,加大对这些人的培养。不过有个前提:你企业寻找的这些人必须要具备强大的学习能力……
培养对象1:理工科专业
领先的大数据软件提供商Tamr公司的现场工程技术负责人Min Xiao表示他寻找人才的诀窍就是培养潜力股!他所看重的潜力主要是教育,包括学历和学校。他所考察的人才主要来自统计学,计算机科学等相关专业,物理专业的人才可能不会是数据分析工作岗位的首选学位,但他表示有物理学位的人往往都很聪明,虽然没有接受过正式的计算机科学的正式训练,但是他们往往进行过大量编程,所以已经具备了数据科学家角色所需的计算机技能,有着这些背景的人才都是Min Xiao希望培养的对象。
培养对象2:Excel专家
The Hershey Company人才分析部门经理Jason Chavarry在另一个不寻常的领域找到了大数据人才:通过Excel……Excel是学习大数据分析基本功能的一款入门级的学习管道,可以通过Excel创造一些相应的规则,利用其基础的统计功能,实现一些基本的数据分析和可视化。Jason Chavarry 表示“Excel可以说是一份沃土,很多人从中可以获得大数据的能力。” 所以精通Excel的人才也是各大企业应该多加留意的对象。
培养对象3:建立导师计划
大数据软件集成公司Talend的CMO Ashley Stirrup的方法是让公司内部有经验的专家来培训年轻人才,开展导师计划,以一带一或者一带多的形式,作为嫁接其业务部门和新兴技术之间的桥梁。取得的效果也非常好。当然了,你要培养的人必须要对大数据有着浓厚的兴趣,否则这个计划也不会持续太久。
人才培养好了,是否能留住他……这是你下一步需要考虑的问题。
留下他,可以为你的企业创造价值。前提企业一定要设置期望。
放开他,也许可以为你的企业创造更大价值!因为他发展的可能会更好,而他出自你的公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13