京公网安备 11010802034615号
经营许可证编号:京B2-20210330
线性回归在所有的统计方法中绝对占有不可忽视的一席之地,其用途之广泛毋庸置疑,更重要的是它是整个回归家族中最为简单、也最容易理解的方法,几乎所有的统计学教材,不管是医学统计还是社会统计抑或经济统计,线性回归绝对会有独立的章节,而其他的回归方法则很少有这种待遇。
线性回归大致可分为单因素回归和多因素回归,这里的“单”和“多”是针对自变量的(也叫原因变量),例如肥胖会对高血压有影响,这里的肥胖就是自变量。吸烟会引发肺癌,这里的吸烟就是自变量。自变量是可以控制的。与自变量相对应的就是因变量(也叫结果变量)。其实仅从它们的名字就能看出其含义:原因引起结果,原因就是自变量,是可以控制的;结果就是因变量,是受自变量变化的影响的,可以通过自变量的改变而改变。
单因素的线性回归,就是说只有一个因变量和一个自变量的情形,这是最简单的线性回归模型。这里先介绍这种最简单的线性回归。
线性回归主要可以用来做什么呢?一个最主要的目的就是寻找某一现象发生的原因。比如,这几年我国的肺癌发生率一直在上升,是什么原因引起的呢?简单来说,如果我们目前只想考虑一个因素,比如烟草的销量。那我们就可以粗略的看一下烟草的销量是不是与肺癌的发生率呈线性关系。 假定如下图所示(虚拟的数据),随着烟草销量的增加,肺癌发生率也增加,表明二者具有线性关系。

线性回归的另一个用途可以用来预测。如果发现了烟草的销量和肺癌发生率有关,那可以通过控制烟草的销量预测肺癌的发生情况。比如,如果减少了烟草销量,可以预期肺癌的发生将会减少。或者说,如果销量到了某一数值,预期肺癌的发生率将对达到多少。但是,预测的前提的其他条件保持不变。比如大气污染等环境因素保持不变,否则就会受这些变化的因素的影响,预测的准确性也就谈不上了。
总之,如果你发现了一种现象,又想探索这种现象背后的原因,就可以考虑采用回归分析。如果这种现象可以用连续型数值来描述的话,可以考虑采用线性回归。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22