
新技术的不断出现,让我们不得不面临新的转变。互联网使得数据的流动和共享成为了可能,云计算技术的开发更是能够全面进行数据分析。我们对数据对的处理不再仅仅是从海量的目标群中选择样本,进行因果分析。相对的,通过技术手段,我们可以对所有相关数据进行整理,深入挖掘数据之间的各种潜在关系,并获得我们想要的精准的关联结论。这就是大数据时代,数据成为了最有价值的存在,同时推动或倒逼各行各业的数字化转型。
移动互联网的快速普及与发展更是推动了这一形势的加剧。当众多的消费者从线下转移到线上之后,众多传统企业才开始意识到“触网”接受技术变革的重要性。“信息量已经进行了转移,消费者线上+线下的跳跃性消费行为需要被评估。”云像数字CEO安士辉如此评价到。
云像数字CEO安士辉
传统企业需要进行数字化转型以便更好的适应时代发展。当互联网公司已经抢先获得大数据优势的时候,传统企业如何能够从从众多的数据挖掘中精准分析消费者行为,并找回线上消费者,成为了其面临的重要难题。
“传统企业对消费者和品牌的定位需要从感性理解转向数字理解。”安世辉表示,这也是云像数字成立之初,希望能够为传统企业带来的全新改变。
2013年,在美国数字服务行业已经发展的如火如荼之时,云像数字公司成立。作为基于CRM的数字一体化服务公司,其发力做创新业务,包括CRM和BI产品搭建与实施、数据分析服务、数字营销和全渠道服务。
对于传统企业来说,单独的电商服务已经无法满足时代变革的诉求。在不同的商业环境下,企业需要更加完整的数据链条与完善的数字化平台。数据的收集不再仅仅局限于门店、社交数据等单独层面,而是要形成完整的O2O闭环,将产业链数据进行打通,更加完善的分析消费者行为,从而进行精准营销。
因此云像数字提出了打造“完整数据资产”的理念,将Digital Marketing与Ecommerce完整打通,整合多种数据源帮助企业构建强大消费者资产。以Omni consumer为基础,明确其完整消费者画像(Face),基于CRM为客户提供数字营销和数字渠道的服务。云像数字的CRM产品属开放平台式产品,主要有以下几大功能模块:数据管理模块、数据报表模块、消费者忠诚度管理模块、工具模块等。“我们希望能够形成品效合一,为企业进行全渠道的O2O服务。”安世辉如此解释到。
但与美国相比,中国市场在数字服务领域仍显稚嫩。虽然存在起步晚等一些客观因素,但在传统企业思维转变与产业链数据开源方面仍面临着许多问题。“传统企业的数据源是割裂的,线上线下很难进行统一,同时全产业链的各个环节,包括经销商的数据还很难进行采集与分析。”安世辉在谈到中国传统企业进行数字化转型所面临的的困难时如此说道。
而目前,云像数字将电商、门店和经销商系统、社会化媒体、移动端等进行完整的数据接触点布局,再通过这些布局实现对消费者的完整描述,进而对消费者加以区分,并根据不同的价值来进行定制化营销和体验管理。以此为基础,结合包括分销系统和产品系统在内的整个供应链系统,将整个系统完整打通,实现消费体验管理,由此促使消费者成为自己的忠实粉丝,进而提升营销业绩,更有效地践行完整数据资产理念。
“我们将企业资金用户产品开发、人才引进和市场运作,希望能够成为以数据为基础的数字服务公司,推进数据产品的商业化应用,帮助传统企业实现数字化转型。”安世辉如此表述云像数字的未来发展规划。
实际上,云像数字的母公司瑞金麟刚刚完成B轮近亿元的融资。安士辉在此前的2014互联网大会上接受记者采访时表示:“本轮融资将开启公司业务创新的大幕为品牌客户提供一体化数字服务,资金主要将投入在数据产品运维、数字业务发展、管理体系化建设、人才引进与品牌发展上,相信会为公司注入强心剂,更好适应数字时代的数据、渠道、品牌等互联网化的需求。” 他认为,目前中国数字服务市场还处于半蓝海状态,竞争并不激烈,对于中国的数字服务企业来说是一个良好的机遇。
融资的成功也表明了云像数字这类数字服务型企业的兴起,将能更好的帮助传统企业进行数字化转型。但传统企业在大环境下面临的各类转型问题并没有办法单靠数字服务公司进行完整解决。传统企业在大数据时代下谋求数字化转型时,除了依靠数字服务公司的帮助,还应加快自身意识的转变,更快的接受新技术所带来的时代变革,并注重人才培养,推动行业整体发展环境的完善。数字服务公司可以帮助企业进行数据的管理与分析,但数据的广度与深度还需依靠企业的自身发展进行完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19