京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对大数据,必须拿出鲜明的态度。我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能只进行概念炒作,使这一仍然朦胧的产业“未富先老”。
对于大数据的描述,没有比阿尔文·托夫勒更浪漫的了:大数据是“第三次浪潮”的华彩乐章。作为一名颇有成就的未来学家,早在上世纪80年代他就作出了这样的预言。然而,大数据真正凸显自身价值,却是在互联网大行其道以后,再准确一点说,也就是这两年,大数据才在全球范围内“火”了起来。
与智能手机、3D打印这些可以亲身体验的划时代产品相比,大数据显得虚无缥缈、难以捉摸,但从未来前景预测,大数据给这个世界带来的改变,或许会更大、更难以想象。
大数据的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,这些海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),关于大数据的定义才算眉清目楚,而最后一个“V”大数据在具体应用中实现怎样的价值,恰恰是决定其未来走向的关键。
在大数据发端的美国,一些大型企业已经在利用数据赚取利润。沃尔玛存储着数千家连锁店在65周内每一笔销售的详细记录,通过分析购买行为了解客户;eBay通过购买网页搜索的关键字,精确计算出每一个关键字为eBay带来的投资回报,五年内广告费用降低99%。在国内,一些互联网企业也在主动拥抱大数据,凡客诚品将自己定位为一家“数据公司”,专门成立了数据中心;百合网分析注册用户的年龄、地域、学历等数据,形成独有的商业模型。
那么,此情此景是否真的表明,大数据时代已经到来?这恐怕是一个过于乐观的判断。
目前涉及大数据的企业,多是在数据利用上单打独斗,而大数据时代到来的重要标志,应该是大批专业级“数据买卖商”的出现,以及围绕数据买卖形成的,贯穿于收集、整理、分析、应用整个流程的产业链条。
至少从目前来看,要从大数据这个藏量巨大的金矿中淘到金子,并没那么容易。但一个令人振奋的事实是,经过一些先行者的不懈探索,大数据这一“华彩乐章”正发出日益恢宏的回响。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,这些互联网巨头这么做的原因只有一个:唯有将海量数据进行有效处理和分析,才能向客户提供有价值的东西。在它们带动下,数据分析技术将日渐成熟,从而围绕大数据逐步形成一个极其庞大的新市场。
巧妇难为无米之炊,掘金大数据的首要一点,还是谁拥有更多、更有价值的数据。社交网络、移动互联网、信息化企业都是海量数据的制造者,脸谱公司手中掌握着8.5亿用户,淘宝注册用户超过3.7亿,腾讯的微信用户突破3亿,这些庞大用户群所提供的数据,正在等待时机释放出巨大商业能量。
由此可见,在必然到来的大数据时代,有两种企业将在“大数据产业链”中处于重要地位,一是掌握海量有效数据的企业,一是有着强大数据分析能力的企业。
我们完全可以预测,在不久的将来,脸谱、腾讯等海量数据持有者要么自我延伸成为数据分析提供商,要么与IBM等企业密切对接成为上下游合作企业,大数据产业链将在某个爆发时点到来之际,以令人惊讶的速度成长壮大。
实际上,大数据不只互联网企业在唱独角戏,制造、销售等各领域企业都将受到大数据深远影响,先知先觉者已主动融入其中,例如海尔就利用阿里巴巴的数据分析用户喜好,实现电器个性化定制。我们毫不怀疑,大数据将对现有商业思维进行新一轮颠覆,未来企业最为核心的竞争力,或许不是人才,不是商业模式,而是对大数据的掌控分析能力。
面对大数据,必须拿出鲜明的态度。当美国奥巴马政府已将其上升到国家战略时,我们不能做一个事不关己的旁观者,至今没有关于大数据的相关规划甚至明确定义。当“大数据时代已经来临”的论调日渐喧嚣时,我们不能故伎重演,大肆进行概念炒作,使这一仍然朦胧的产业“未富先老”。
我们唯一要做的,是深刻认识大数据,并在战略层面、科学角度切实行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26