
几个奇葩例子让你深度认识大数据
因为大数据,我们的生活是否变得更舒适?亦或,从此我们的生活细节都要暴露在数据的分析之下?我们该如何正确认识大数据?现在,先让我们了解一些真实的大数据的例子。
大数据早已成了我们耳熟能详的词汇,大数据也逐渐得到的政府,企业和个人的重视。基于此,大数据究竟在如何影响着我们的生活?
大数据(Big data)
因为他,我们的生活是否变得更舒适?亦或,从此我们的生活细节都要暴露在数据的分析之下?我们该如何正确认识大数据?现在,先让我们了解一些真实的大数据的例子。
从地球到月球的距离
如果我们将一天内产生的数据全部烧录进DVD光碟内,那这些光碟叠起来可以搭成地表到月球的DVD高塔,而且还是双塔。
大数据与星星
根据IDC的分析,2008年时数码数据量就超过了目前已知的宇宙内星星数量,而且以数据成长的速度,2023年时全球数据量将会超过亚佛加厥常数(Avogadro's number)--也就是6.022×10^23。
亚佛加厥常数
男性内裤销量反映经济形势
已故美联储前主席格林斯潘(Alan Greenspan)曾提出过一个著名的"男性内裤销量反映经济形势"的理论。即经济形势良好,内裤销量会平稳上升,反之则下降。
原因很简单,经济萧条时,男性会节俭开支,少买内裤。。。
啤酒与尿布
这是个经典的商场数据分析案例。在上世纪90年代,美国沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,"啤酒"与"尿布"两件看上去毫无关系的商品会经常出现在同一个购物篮中。
啤酒与尿布
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。
女性头发与经济波动
据日本最大日用品制造公司"花王",于1987年开始在东京银座对1000名,二十至三十岁女性进行的年度民调后汇编的"发型统计"显示,他们偏好蓄长发时显示经济在复苏中,反之则经济仍在恶化。
比如,1997年,留短发的比蓄长发的人多,那年为日本经济"最差"的一年,2008年经济有所起色,超过八成受访女性头发都很长。
手纸与肥皂
双十一海报
前年“双十一”(11.11)这一天,京东商城卖出了80万块香皂,重量约115吨,相当于23头大象;基情无限的同时,手纸卖出900万卷,8亿多抽手纸,按一秒钟扯一抽的话,至少要扯3年,按一卷纸30米算,900万卷至少可绕地球7圈。
处女座与小龙虾
根据"首届小龙虾美食节"的"小云WiFi美食大数据"显示,女性对美食喜欢程度超过男性,66%的女性喜欢吃小龙虾;而在年龄统计中发现,20-25岁的美食达人最多,处女座是所有星座中最爱食用小龙虾的人群。
一位美食大V不无严肃的认为,从一个侧面说明现在商家的小龙虾的制作工艺、烹饪方式已经达到了一定的高水准,"毕竟处女座的追毛求疵的性格是不争的事实"。
女服务员与股市
在这个刷脸的时代,容貌早已成了求职的隐形标准(不过凤姐当上凤凰客户端主笔,理当另说)。据纽约观察员的解读,当美艳的女服务员随店可见时,经济必陷困境,反之则显示经济兴旺,换句话说,当你到处碰见美女服务员,便可考虑抛售股票。
服务员与股市
该观察员的解释是,当经济红火,颇有点"资本"的女性很容易找到工作环境舒适的工作,诸如商品模特、推销员等。此外,男性经济宽裕后也更容易"金屋藏娇"。
大数据遇到爱情
美国波士顿数学家克里斯·麦金利(Chris McKinlay)注册一个婚恋网站后,认为他们的配对模式不合适,于是他自己写程序,只花了不到90天时间就在茫茫人海中找到了心仪的对象。
这位克里斯开设了12个账户,利用计算机程序随意作答网站的配对问卷,从2万名用户中收集到600万条问题的答案,然后利用演算程序筛选出5000名住在美国的活跃用户,从中按性格分类又选出最符合择偶条件的2组女子。
之后克里斯又创建了两个账号,诚实地回答这两类姑娘们最关注的500个问题。回答完问题后,他发现和自己匹配度在90%以上的超过10000人,最高匹配度达到了99%。
克里斯·麦金利
为了获得这些姑娘们的关注。克里斯编了一个新程序,自动访问与他匹配度高的对象,对方回访他的页面时,就会给他留言。
在经过不少尝试后,克里斯终于约到一名亚裔女孩。他见面时主动披露破解网站的秘诀,对方极为欣赏,二人开始恋爱关系。并在恋爱一周年后克里斯求婚成功,二人终成眷属。如此"用心",也是醉了。
食色性也 "看完速7,去速8"
《速度与激情7》
食色性也:凡是人的生命,不离两件大事:饮食、男女。《速度与激情7》上映时,"看完速7,去速8"一度成为相互调侃的流行语。而日前,猫眼电影整合了2015年上半年的售票数据,做了一个有意思的数据报告。报告根据用户购买电影票的习惯,结合用户在美团上的相关消费行为,发现了有意思的现象。
数据显示,用户在购买电影票的同时,有79%会进行餐饮消费,10%会选择唱K、桌游、足疗等休闲活动,还有11%会选择酒店消费。注意噢,酒店消费里,有81%选择的是"速8"一类的经济型酒店……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27