
Uber的大数据分析实践,及其惊人的表现
Uber是一款提供出租车预订服务的智能手机应用,为需要搭车的用户和想要载客的司机搭建了沟通渠道。这项服务引起了很大争议,一方面普通的出租车司机抱怨Uber毁掉了他们的生计,另一方面民众担心Uber的司机缺乏监管。
但这些争议并没能阻止Uber取得巨大的成功:2009年发布时仅覆盖旧金山一地,到了现在,除了南极洲之外,已覆盖所有大陆的许多主要城市。
这家公司深深地扎根于大数据,对数据的运用远比传统出租车公司要更高效,而这正是促使它成功的很大一部分原因。
Uber的整体商业模式是基于众包(crowd sourcing)的大数据原则,让愿意载人的车主提供载客服务。
Uber有一个庞大的数据库,储存着服务覆盖范围内所有城市的司机信息,一旦有乘客请求搭车,他们就能立即为其匹配最合适的司机。
车费是根据GPS定位以及街道数据来自动结算,再配合Uber自己的算法,根据路程常用的时间进行调整,得出最终的数字。这是与普通出租车服务最关键的不同之处,乘客是根据路程所花费的时间而不是距离来付费的。
峰值定价策略
这些算法会实时监控交通状况与路程所用时间的长短,也就是说:乘车价格会根据搭车需求的高低作出调整,同时在交通繁忙时,同样的路程所用时间也更长。这种定价策略会激励司机在高峰期载客,在搭车需求较低的时候待在家里。Uber还为这种基于大数据信息的定价策略申请了专利,又称“峰值定价策略”。
这种基于算法的计价方式不受人类监督,有时候会造成问题——据报道,2011年新年前夜,由于纽约的交通出现状况,搭车费用一个晚上从每英里27美元上涨到了135美元,飙升了7倍。
这就是所谓的“动态定价”,与连锁酒店和航空公司所使用的按需调价非常类似,不过Uber的方式更复杂一些,不是简单地在周末或者公共假期调高价格,而是运用预测模型来评估实时需求。
UberPool拼车服务
不过,改变我们的订车方式只是Uber宏伟计划的一部分。Uber的CEO Travis Kalanick声称:这种服务也会减少那些世界上最拥挤的城市路面上,由车主本人驾驶的私家车数量。去年在一次采访中,他表示:在他看来,UberPool拼车服务将会令伦敦街道上的车流减少三分之一。
UberPool允许使用者根据Uber的数据库,找到附近常在类似时间跑类似路程的其他用户,并向其提供拼车服务。根据官方博客的说法,他们在查看数据库时发现“Uber在纽约的行程绝大多数”都十分类似,起点和终点都很接近,而且经常发生在同样的时间段,因此这项服务的想法就出现地轻而易举了。
其他测试过或计划发布的项目还有为富人提供直升机出行的UberChopper,为杂货店提供交付服务的UberFresh,以及提供包裹快递服务的Uber Rush。
评价系统
这项服务还依赖于详细的评分系统——用户可以对司机进行评价,反过来也是一样。这样逐渐建立信任,双方在决定是否拼车时也能获得充足的信息。
尤其是司机,都得特别小心保持较高的信用等级——有泄漏的内部资料显示:那些评分低于特定阈值的司机都面临被“解雇”的风险,无法再继续接单。
他们还有另一个要关心的指标,就是“接单率”,这个数字代表着他们接受与拒绝的单数。根据Uber的要求,司机应当保持80%以上的接单率,才能持续不断地为乘客提供服务。
为了回应来自传统出租车行业的抗议者,Uber增加了新的搭车分类,让传统的出租车司机也能接单。UberTaxi指的是,乘客可以选择搭乘由执有许可的出租车司机所驾驶的注册私人雇佣车辆。其他标准选项还有:UberX:普通车辆+普通行程;UberSUV:多于6人乘坐的大型车辆;UberLux:高端车辆。
监管的压力与争议
Uber还需克服法律障碍,目前有少数地区(包括布鲁塞尔和印度部分地区)都禁止使用这项服务,而世界上的很多地区对这项服务都有很严格的审查。在美国有几起诉讼就是关于Uber是否有遵守监管程序的。
另一项被人诟病的地方是:车费只能用信用卡支付。Uber目前已将服务重心转向欠发达国家,但那里有很多人由于信用卡的问题,无法使用这项服务。
不过鉴于Uber在全球覆盖地区的受欢迎程度,公司有很大的经济动力继续推进私人旅行的革新计划。
如果能从监管压力中幸存下来,对于我们所有处于拥挤城市的人口而言,Uber将会改革我们的出行方式,很显然无论在环境方面,还是出于经济效益,这都是一件好事。
Uber并不是独一无二的,它的竞争者也在提供类似的服务,虽然规模上要小一些,比如Lyft、Sidecar和Haxi。如果在Uber的努力创新下,出现私人雇佣市场管制解除的局面,这将会具有重大价值。这些创业公司之间也将会出现激烈的竞争局面。我们能够预测:对可用数据作出充分利用,从而改进为客户提供服务质量的公司将会是其中的赢家。
而对数据作出最佳利用的那家公司必是其中最璀璨的佼佼者。
案例研究:Uber如何运用大数据——这是一个深度的优秀案例研究,主题是关于Uber运用大数据来构建整个商业模式的方式,案例分析引用了一些实际案例,以及一些使用过的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09