
大数据的秘密—社会化媒体的开放之路
大数据可以说是近来年最火热的一个话题。微博等社交化媒体因其独特的开放性特征,也成为大数据利用最令人关注的领域。
而这两年,随着微博、微信等社交平台商业化尝试的深入,及其结果的不尽如人意,大数据的利用成为了一个能否实现商业化实质突破的关键点。而这个点的关键又在于社交平台是否能做到对大数据的真正开放。
对于社交平台大数据开放,行业关注点现在主要在集中在两方面:其一是社交平台大数据究竟价值几何?其二,是基于这一大数据,平台方能给出怎样的的全面开放政策,以及这类政策的持续和稳定性又如何。
社交平台的数据价值
要了解社交平台大数据的价值,首先要搞清楚的是,开放平台合作伙伴们是如何利用这一大数据的。
化繁为简,我们将其概括为三步:首先是对平台所产生的庞大数据进行分析;然后,通过分析获得数据背后的用户诉求;最后,针对用户诉求进行个性化、精确化和智能化的信息推送和服务推广,并最终实现吸引用户点击、消费的目标。
举个简单例子,比如有用户在微博分享地理位置、景点等信息时,其广告模块就会快速精准的为其推荐相关的机票、酒店等信息。
而实现这一所有流程的起始点,就在于用户在社交网络上的生活化分享。而这也正是社交网络大数据的价值所在。
此外,企业通过社交大数据的分析和处理,还可以低成本的进行舆论监控,极大降低了企业品牌危机产生和扩散的可能。
社交平台的数据价值不言而喻。近日,新浪CTO许良杰在接受采访时就着重谈了大数据,并称“新浪微博作为社会化平台,最大的价值在于大数据”。
超5亿的用户群及每天产生各种信息便是新浪微博有价值的大数据。目前,其正基于此做多种商业化的尝试,但对这些尝试,业界评价似乎不是太高。
比如,包括粉丝通、Pagerank、淘宝广告等在内的基于大数据的产品尝试,皆一定程度上影响了用户体验,在利用数据的同时,产生了诸多垃圾数据,更降低了用户活跃度,对平台价值进行着侵蚀。
要知道,社交平台的数据价值指的并不单纯是用户数及用户信息等,而是基于其动态数据的挖掘、分析和以API接口的输出,及再利用。这需要诸多环节的协同与努力,而非平台方一家力所能及。
正如Facebook的工程总监Parikh所说:“大数据的意义在于真正对你的生意有内在的洞见。如果你不能好好利用自己收集到的数据,那你只是空有一堆数据而已,不叫大数据。”
开放尺度定成败
大数据的价值只是基础,要实现智能营销,一个重要层面还在于第三方能从多大程度上利用到这一数据进行挖掘。
而这也包含了两个层面,首先是API开放多样性,其次是数据的完整性。
在API开放方面,一直以来行业对开放平台期待最多的公司要数新浪。新浪初期也的确不负众望,给予了第三方开发者近百个API接口,可谓相当丰富。在2012年前后,通过这些接口,也密集涌现出了很多基于新浪微博大数据的创业公司,盛况空前。
然而这种基于开放而联姻的蜜月期还没来得及令人回味,新浪对于API开放的态度却在近期发生了转变。如在去年,新浪微博便关闭了其开放平台的私信接口,今年更是对开放平台接口做了进一步收紧(对当前授权应用只能读取授权该应用的当前用户微博,不能获取其他用户微博;同时,当前授权应用只能读取授权该应用的当前用户的关系,不能读取其他用户的关系。)。
而这种收窄的姿态,在阿里巴巴入股新浪微博之后,愈趋明显。
众多开发者表示,其多款应用的数据已被清空或者api接口被停用。现在新浪开放平台的每次更新也是删的多,增的少,而增加的功能也大多都是可有可无的。
开发作为当下互联网的一个趋势(百度、阿里巴巴、腾讯【简称BAT】三巨头都在谈开放),新浪微博反其道而行之,当然,新浪对API开放性的收缩,我们要承认其一些深层次的因素考量。比如之前私信端口的开放,就造成大量垃圾信息对用户的骚扰;以及与阿里联姻后,来自阿里方面的诉求和压力等。
与此相比,一直以来不声不响的腾讯微博倒在开放平台上做出了不少动静。比如,国内唱吧、啪啪,国外cooliris都选择了腾讯微博,甚至IOS7系统也首次开放IOS-SDK给腾讯微博。
其次说到开放的完整性,所谓数据完整性就是当开发者请求某种数据时,开放平台是否对返回数据的数量有所限制。这点也最能反映出一个平台的真实开放程度。
以最基本的获取一个用户的”粉丝列表“为例,新浪,对于一般授权用户,最多只能获得5000个最新粉丝信息,而腾讯则没有任何的限制。
腾讯副总裁刘炽平曾在其内部讲话中曾提到:“关键路径要有用户价值,如果没有用户价值,这里放一个流量,那里放一个流量,价值不大。” 而这句话也正点明了大数据开放的本质应该是什么。
行业皆知,只有数据挖掘精准度在85%以上时,才具备实现精准营销的条件。如数据挖掘不够精准,就会直接影响到广告营销的投放效果。而数据不完整,数据挖掘的精准度只是空谈而已。
而数据完整开放的重要性,还不仅仅限于第三方开放者,对于社交平台本身,在提升用户体验方面也息息相关。
比如腾讯微博最近上线的微圈、微热点、微频道、微博管家等产品,就是通过数据挖掘技术,抽取用户阅读时间线中来自游戏、活动、第三方应用等营销和广告微博,并将其过滤,从而进一步减轻垃圾信息对于微博用户的骚扰,从而使用户更高效的获取优质微博信息,最终实现用户阅读体验的提升。
这种将大数据挖掘产品化的路子,应该说值得借鉴。因为一方面,它能比较充分的满足第三方开发者需求;更重要的是,这并不以影响用户端的产品体验为代价,实施得好的话,可形成一个良性闭环模式
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19